1
|
Pashazadeh Azari P, Rezaei Zadeh Rukerd M, Charostad J, Bashash D, Farsiu N, Behzadi S, Mahdieh Khoshnazar S, Heydari S, Nakhaie M. Monkeypox (Mpox) vs. Innate immune responses: Insights into evasion mechanisms and potential therapeutic strategies. Cytokine 2024; 183:156751. [PMID: 39244831 DOI: 10.1016/j.cyto.2024.156751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Orthopoxviruses, a group of zoonotic viral infections, have emerged as a significant health emergency and global concern, particularly exemplified by the re-emergence of monkeypox (Mpox). Effectively addressing these viral infections necessitates a comprehensive understanding of the intricate interplay between the viruses and the host's immune response. In this review, we aim to elucidate the multifaceted aspects of innate immunity in the context of orthopoxviruses, with a specific focus on monkeypox virus (MPXV). We provide an in-depth analysis of the roles of key innate immune cells, including natural killer (NK) cells, dendritic cells (DCs), and granulocytes, in the host defense against MPXV. Furthermore, we explore the interferon (IFN) response, highlighting the involvement of toll-like receptors (TLRs) and cytosolic DNA/RNA sensors in detecting and responding to the viral presence. This review also examines the complement system's contribution to the immune response and provides a detailed analysis of the immune evasion strategies employed by MPXV to evade host defenses. Additionally, we discuss current prevention and treatment strategies for Mpox, including pre-exposure (PrEP) and post-exposure (PoEP) prophylaxis, supportive treatments, antivirals, and vaccinia immune globulin (VIG).
Collapse
Affiliation(s)
- Pouya Pashazadeh Azari
- Department of Immunology, Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Farsiu
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Saleh Behzadi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sajjad Heydari
- Department of Immunology, Faculty of Medicine, Kerman University of Medical Science, Kerman, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Fang L, Chen L, Lin B, Han L, Zhu K, Song Q. Analysis of Inflammatory and Homeostatic Roles of Tissue-resident Macrophages in the Progression of Cholesteatoma by RNA-Seq. Immunol Invest 2020; 50:609-621. [PMID: 32573304 DOI: 10.1080/08820139.2020.1781161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tissue-resident macrophages (TRMØs) can act as innate-immune sentinels to protect body against microbe invaders and stimulating materials such as cholesterol crystals in cholesteatoma, as well as to preserve tissue integrity by cleaning unwanted cellular debris. METHODS TRMØs in the incised middle ear tissues were obtained from the patients with cholesteatoma as an experimental group and the patients without cholesteatoma as a control group. Differential gene expression profiling of TRMØs was conducted between two groups by analyzing GO processes, KEGG and GSEA pathways of inflammation, tissue repair and homeostasis. RESULTS The current study showed that 145 of 7060 genes were significantly up-regulated (logFC>2 and FDR <0.05) when compared with the patients without cholesteatoma. GO process, GSEA and Cytoscape analysis of the over-expressed genes illustrated the boosted inflammatory and anti-infection functions of TRMØs existed neutrophil function, leukocyte migration, and adaptive immune response involved receptors and signaling pathways. Whereas the homeostasis and repair functions of TRMØs were affected from up-regulated genes, such as over-expressed keratin-13 that helped form the outer keratinising squamous epithelial layer, and over-expressed MMPs that activated the extracellular matrix molecules to promote inflammation and disturb tissue remodeling. Additionally, 74 down-regulated genes (logFC<-2 and FDR <0.05) also affected the homeostasis and repair functions by affecting extracelluar matrix structure and contractile fibres in TRMØs. CONCLUSIONS The cellular and molecular levels in cholesteatoma is attributable to chronic infection and several disturbed cellular biological processes involving cell integrity and tissue remodeling.
Collapse
Affiliation(s)
- Lian Fang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lin Chen
- Department of Pathology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Bi Lin
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liang Han
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kaiquan Zhu
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qifa Song
- Central Laboratory, Ningbo First Hospital, Ningbo City, Zhejiang Province, China
| |
Collapse
|