1
|
Abdulsalam L, Mordecai J, Ahmad I. Non-viral gene therapy for Leber's congenital amaurosis: progress and possibilities. Nanomedicine (Lond) 2025; 20:291-304. [PMID: 39707712 PMCID: PMC11792828 DOI: 10.1080/17435889.2024.2443387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Leber's congenital amaurosis (LCA) represents a set of rare and pervasive hereditary conditions of the retina that cause severe vision loss starting in early childhood. Targeted treatment intervention has become possible thanks to recent advances in understanding LCA genetic basis. While viral vectors have shown efficacy in gene delivery, they present challenges related to safety, low cargo capacity, and the potential for random genomic integration. Non-viral gene therapy is a safer and more flexible alternative to treating the underlying genetic mutation causing LCA. Non-viral gene delivery methods, such as inorganic nanoparticles, polymer-based delivery systems, and lipid-based nanoparticles, bypass the risks of immunogenicity and genomic integration, potentially offering a more versatile and personalized treatment for patients. This review explores the genetic background of LCA, emphasizing the mutations involved, and explores diverse non-viral gene delivery methods being developed. It also highlights recent studies on non-viral gene therapy for LCA in animal models and clinical trials. It presents future perspectives for gene therapy, including integrating emerging technologies like CRISPR-Cas9, interdisciplinary collaborations, personalized medicine, and ethical considerations.
Collapse
Affiliation(s)
- Latifat Abdulsalam
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - James Mordecai
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| |
Collapse
|
2
|
Gong X, Hertle RW. Infantile Nystagmus Syndrome-Associated Inherited Retinal Diseases: Perspectives from Gene Therapy Clinical Trials. Life (Basel) 2024; 14:1356. [PMID: 39598155 PMCID: PMC11595273 DOI: 10.3390/life14111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a clinically and genetically diverse group of progressive degenerative disorders that can result in severe visual impairment or complete blindness. Despite their predominantly monogenic inheritance patterns, the genetic complexity of over 300 identified disease-causing genes presents a significant challenge in correlating clinical phenotypes with genotypes. Achieving a molecular diagnosis is crucial for providing patients with definitive diagnostic clarity and facilitating access to emerging gene-based therapies and ongoing clinical trials. Recent advances in next-generation sequencing technologies have markedly enhanced our ability to identify genes and genetic defects leading to IRDs, thereby propelling the development of gene-based therapies. The clinical success of voretigene neparvovec (Luxturna), the first approved retinal gene therapy for RPE65-associated Leber congenital amaurosis (LCA), has spurred considerable research and development in gene-based therapies, highlighting the importance of reviewing the current status of gene therapy for IRDs, particularly those utilizing adeno-associated virus (AAV)-based therapies. As novel disease-causing mutations continue to be discovered and more targeted gene therapies are developed, integrating these treatment opportunities into the standard care for IRD patients becomes increasingly critical. This review provides an update on the diverse phenotypic-genotypic landscape of IRDs, with a specific focus on recent advances in the understanding of IRDs in children with infantile nystagmus syndrome (INS). We highlight the complexities of the genotypic-phenotypic landscape of INS-associated IRDs, including conditions such as achromatopsia, LCA, congenital stationary night blindness, and subtypes of retinitis pigmentosa. Additionally, we provide an updated overview of AAV-based gene therapies for these diseases and discuss the potential of gene-based therapies for underlying IRDs that lead to INS, offering a valuable resource for pediatric patients potentially eligible for ongoing clinical trials.
Collapse
Affiliation(s)
- Xiaoming Gong
- Department of Ophthalmology, Akron Children’s Hospital, Akron, OH 44308, USA;
- Vision Center of Excellence, Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
| | - Richard W. Hertle
- Department of Ophthalmology, Akron Children’s Hospital, Akron, OH 44308, USA;
- Vision Center of Excellence, Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
3
|
Hui EKY, Yam JCS, Rahman F, Pang CP, Kumaramanickavel G. Ophthalmic genetic counselling: emerging trends in practice perspectives in Asia. J Community Genet 2023; 14:81-89. [PMID: 36322374 PMCID: PMC9947206 DOI: 10.1007/s12687-022-00616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Genetic counselling (GC) provides information to the patient and the family to make informed choices. Among the advanced Western countries and a few Asian countries, there are certified or trained professionals who perform GC. The Human Genome Project and next-generation sequencing diagnostics have provided an opportunity for increased genetic testing in the field of ophthalmology. The recent interventional therapeutic research strategies have also generated additional interest to seek GC globally, including in Asia. However, GC has several barriers to practise in the developing countries in Asia, namely, (a) shortage of qualified or trained genetic counsellors, (b) poor knowledge and reluctance in clinical adoption of genomics among the physicians in clinical practice, (c) overstretched public health services, and (d) negligible ophthalmic GC-related research and publications. The GC inadequacy in Asia is glaring in the most populous countries like China and India. Cultural differences, religious beliefs, misogyny, genetic discrimination, and a multitude of languages in Asia create unique challenges that counsellors in the West may only encounter with the immigrant minorities. Since there are currently 500 or more specific Mendelian genetic eye disorders, it is important for genetic counsellors to translate the genetic results at a level that the patient and family understand. There is therefore a need for governmental and healthcare organisations to train genetic counsellors in Asia and especially this practice must be included in the routine comprehensive ophthalmic care practice.
Collapse
Affiliation(s)
- Esther K. Y. Hui
- Department of Ophthalmology, University College London, London, UK
| | - Jason C. S. Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Farhana Rahman
- Department of Pharmacology, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, India.
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | | |
Collapse
|
4
|
Wang Y, Hu LF, Zhou TJ, Qi LY, Xing L, Lee J, Wang FZ, Oh YK, Jiang HL. Gene therapy strategies for rare monogenic disorders with nuclear or mitochondrial gene mutations. Biomaterials 2021; 277:121108. [PMID: 34478929 DOI: 10.1016/j.biomaterials.2021.121108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Rare monogenic disorders are a group of single-gene-mutated diseases that have a low incidence rate (less than 0.5‰) and eventually lead to patient disability and even death. Due to the relatively low number of people affected, these diseases typically fail to attract a great deal of commercial investment and research interest, and the affected patients thus have unmet medical needs. Advances in genomics biology, gene editing, and gene delivery can now offer potentially effective options for treating rare monogenic diseases. Herein, we review the application of gene therapy strategies (traditional gene therapy and gene editing) against various rare monogenic diseases with nuclear or mitochondrial gene mutations, including eye, central nervous system, pulmonary, systemic, and blood cell diseases. We summarize their pathologic features, address the barriers to gene delivery for these diseases, discuss available therapies in the clinic and in clinical trials, and sum up in-development gene delivery systems for various rare monogenic disorders. Finally, we elaborate the possible directions and outlook of gene therapy for rare monogenic disorders.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Fan Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lian-Yu Qi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Feng-Zhen Wang
- Department of Clinical Pharmacy, The First Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China; Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Chiu W, Lin TY, Chang YC, Isahwan-Ahmad Mulyadi Lai H, Lin SC, Ma C, Yarmishyn AA, Lin SC, Chang KJ, Chou YB, Hsu CC, Lin TC, Chen SJ, Chien Y, Yang YP, Hwang DK. An Update on Gene Therapy for Inherited Retinal Dystrophy: Experience in Leber Congenital Amaurosis Clinical Trials. Int J Mol Sci 2021; 22:ijms22094534. [PMID: 33926102 PMCID: PMC8123696 DOI: 10.3390/ijms22094534] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of rare eye diseases caused by gene mutations that result in the degradation of cone and rod photoreceptors or the retinal pigment epithelium. Retinal degradation progress is often irreversible, with clinical manifestations including color or night blindness, peripheral visual defects and subsequent vision loss. Thus, gene therapies that restore functional retinal proteins by either replenishing unmutated genes or truncating mutated genes are needed. Coincidentally, the eye’s accessibility and immune-privileged status along with major advances in gene identification and gene delivery systems heralded gene therapies for IRDs. Among these clinical trials, voretigene neparvovec-rzyl (Luxturna), an adeno-associated virus vector-based gene therapy drug, was approved by the FDA for treating patients with confirmed biallelic RPE65 mutation-associated Leber Congenital Amaurosis (LCA) in 2017. This review includes current IRD gene therapy clinical trials and further summarizes preclinical studies and therapeutic strategies for LCA, including adeno-associated virus-based gene augmentation therapy, 11-cis-retinal replacement, RNA-based antisense oligonucleotide therapy and CRISPR-Cas9 gene-editing therapy. Understanding the gene therapy development for LCA may accelerate and predict the potential hurdles of future therapeutics translation. It may also serve as the template for the research and development of treatment for other IRDs.
Collapse
Affiliation(s)
- Wei Chiu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
| | - Ting-Yi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yun-Chia Chang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Henkie Isahwan-Ahmad Mulyadi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shen-Che Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
| | - Chun Ma
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Aliaksandr A. Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
| | - Shiuan-Chen Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
| | - Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yu-Bai Chou
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (W.C.); (S.-C.L.); (S.-C.L.); (K.-J.C.); (Y.-B.C.); (C.-C.H.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Tai-Chi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence: (Y.C.); (Y.-P.Y.); (D.-K.H.)
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (Y.C.); (Y.-P.Y.); (D.-K.H.)
| | - De-Kuang Hwang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (T.-Y.L.); (H.I.-A.M.L.); (C.M.); (A.A.Y.); (T.-C.L.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Correspondence: (Y.C.); (Y.-P.Y.); (D.-K.H.)
| |
Collapse
|
6
|
Imani S, Cheng J, Mobasher‐Jannat A, Wei C, Fu S, Yang L, Jadidi K, Khosravi MH, Mohazzab‐Torabi S, Shasaltaneh MD, Li Y, Chen R, Fu J. Identification of a novel RPGRIP1 mutation in an Iranian family with leber congenital amaurosis by exome sequencing. J Cell Mol Med 2018; 22:1733-1742. [PMID: 29193763 PMCID: PMC5824405 DOI: 10.1111/jcmm.13454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
Leber congenital amaurosis (LCA) is a heterogeneous, early-onset inherited retinal dystrophy, which is associated with severe visual impairment. We aimed to determine the disease-causing variants in Iranian LCA and evaluate the clinical implications. Clinically, a possible LCA disease was found through diagnostic imaging, such as fundus photography, autofluorescence and optical coherence tomography. All affected patients showed typical eye symptoms associated with LCA including narrow arterioles, blindness, pigmentary changes and nystagmus. Target exome sequencing was performed to analyse the proband DNA. A homozygous novel c. 2889delT (p.P963 fs) mutation in the RPGRIP1 gene was identified, which was likely the deleterious and pathogenic mutation in the proband. Structurally, this mutation lost a retinitis pigmentosa GTPase regulator (RPGR)-interacting domain at the C-terminus which most likely impaired stability in the RPGRIP1 with the distribution of polarised proteins in the cilium connecting process. Sanger sequencing showed complete co-segregation in this pedigree. This study provides compelling evidence that the c. 2889delT (p.P963 fs) mutation in the RPGRIP1 gene works as a pathogenic mutation that contributes to the progression of LCA.
Collapse
Affiliation(s)
- Saber Imani
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
- Hunan Normal University Medical CollegeChangshaHunanChina
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Abdolkarim Mobasher‐Jannat
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
- Student Research CommitteeBaqiyatallah University of Medical SciencesTehran Iran
| | - Chunli Wei
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Shangyi Fu
- The Honors CollegeUniversity of HoustonHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Lisha Yang
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khosrow Jadidi
- Department of OphthalmologyBaqiyatallah University of Medical SciencesTehranIran
| | | | - Saman Mohazzab‐Torabi
- Eye Research CenterFarabi Eye HospitalTehran University of Medical SciencesTehranIran
| | - Marzieh Dehghan Shasaltaneh
- Laboratory of Neuro‐organic ChemistryInstitute of Biochemistry and Biophysics (IBB)University of TehranTehranIran
- Laboratory of Systems Biology and Bioinformatics (LBB)Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
| | - Yumei Li
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Rui Chen
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Junjiang Fu
- Key Laboratory of Epigenetics and OncologyResearch Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
- Hunan Normal University Medical CollegeChangshaHunanChina
| |
Collapse
|
7
|
Zhong H, Eblimit A, Moayedi Y, Boye SL, Chiodo VA, Chen Y, Li Y, Nichols RM, Hauswirth WW, Chen R, Mardon G. AAV8(Y733F)-mediated gene therapy in a Spata7 knockout mouse model of Leber congenital amaurosis and retinitis pigmentosa. Gene Ther 2015; 22:619-27. [PMID: 25965394 DOI: 10.1038/gt.2015.42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/14/2015] [Accepted: 03/23/2015] [Indexed: 12/27/2022]
Abstract
Loss of SPATA7 function causes the pathogenesis of Leber congenital amaurosis and retinitis pigmentosa. Spata7 knockout mice mimic human SPATA7-related retinal disease with apparent photoreceptor degeneration observed as early as postnatal day 15 (P15). To test the efficacy of adeno-associated virus (AAV)-mediated gene therapy for rescue of photoreceptor survival and function in Spata7 mutant mice, we employed the AAV8(Y733F) vector carrying hGRK1-driven full-length FLAG-tagged Spata7 cDNA to target both rod and cone photoreceptors. Following subretinal injection of this vector, FLAG-tagged SPATA7 was found to colocalize with endogenous SPATA7 in wild-type mice. In Spata7 mutant mice initially treated at P15, we observed improvement of photoresponse, photoreceptor ultrastructure and significant alleviation of photoreceptor degeneration. Furthermore, we performed treatments at P28 and P56 and found that all treatments (P15-P56) can ameliorate rod and cone loss in the long term (1 year); however, none efficiently protect photoreceptors from degeneration by 86 weeks of age as only a small amount of treated photoreceptors can survive to this time. This study demonstrates long-term improvement of photoreceptor function by AAV8(Y733F)-introduced Spata7 expression in a mouse model as potential treatment of the human disease, but also suggests that treated mutant photoreceptors still undergo progressive degeneration.
Collapse
Affiliation(s)
- H Zhong
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - A Eblimit
- 1] HGSC, Baylor College of Medicine, Houston, TX, USA [2] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Y Moayedi
- 1] Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA [2] Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - S L Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - V A Chiodo
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Y Chen
- 1] HGSC, Baylor College of Medicine, Houston, TX, USA [2] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Y Li
- 1] HGSC, Baylor College of Medicine, Houston, TX, USA [2] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - R M Nichols
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - W W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - R Chen
- 1] HGSC, Baylor College of Medicine, Houston, TX, USA [2] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [3] Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - G Mardon
- 1] Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA [2] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [3] Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA [4] Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA [5] Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Chacon-Camacho OF, Zenteno JC. Review and update on the molecular basis of Leber congenital amaurosis. World J Clin Cases 2015; 3:112-124. [PMID: 25685757 PMCID: PMC4317604 DOI: 10.12998/wjcc.v3.i2.112] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/03/2014] [Accepted: 11/19/2014] [Indexed: 02/05/2023] Open
Abstract
Inherited retinal diseases are uncommon pathologies and one of the most harmful causes of childhood and adult blindness. Leber congenital amaurosis (LCA) is the most severe kind of these diseases accounting for approximately 5% of the whole retinal dystrophies and 20% of the children that study on blind schools. Clinical ophthalmologic findings including severe vision loss, nystagmus and ERG abnormalities should be suspected through the first year of life in this group of patients. Phenotypic variability is found when LCA patients have a full ophthalmologic examination. However, a correct diagnosis may be carried out; the determination of ophthalmologic clues as light sensibility, night blindness, fundus pigmentation, among other, join with electroretinographics findings, optical coherence tomography, and new technologies as molecular gene testing may help to reach to a precise diagnosis. Several retinal clinical features in LCA may suggest a genetic or gene particular defect; thus genetic-molecular tools could directly corroborate the clinical diagnosis. Currently, approximately 20 genes have been associated to LCA. In this review, historical perspective, clinical ophthalmological findings, new molecular-genetics technologies, possible phenotype-genotypes correlations, and gene therapy for some LCA genes are described.
Collapse
|
9
|
Wright CB, Redmond TM, Nickerson JM. A History of the Classical Visual Cycle. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:433-48. [DOI: 10.1016/bs.pmbts.2015.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Shukla R, Kannabiran C, Jalali S. Genetics of Leber congenital amaurosis: an update. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Sheck L, Al-Taie R, Sharp D, Vincent A. Alström syndrome--an uncommon cause of early childhood retinal dystrophy. BMJ Case Rep 2011; 2011:bcr.06.2011.4388. [PMID: 22688943 DOI: 10.1136/bcr.06.2011.4388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alström syndrome (AS) is a ciliopathy and an uncommon cause of syndromic retinal dystrophy. This case reports findings in a 5-year-old boy with severe early onset retinal dystrophy, and how the recognition of extraocular features with genetic analysis led to the correct diagnosis of AS after 4 years of investigation.
Collapse
Affiliation(s)
- Leo Sheck
- Ophthalmology Department, University of Auckland, Auckland, New Zealand.
| | | | | | | |
Collapse
|
12
|
Stasheff SF, Shankar M, Andrews MP. Developmental time course distinguishes changes in spontaneous and light-evoked retinal ganglion cell activity in rd1 and rd10 mice. J Neurophysiol 2011; 105:3002-9. [PMID: 21389300 DOI: 10.1152/jn.00704.2010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a subset of hereditary retinal diseases, early photoreceptor degeneration causes rapidly progressive blindness in children. To better understand how retinal development may interact with degenerative processes, we compared spontaneous and light-evoked activity among retinal ganglion cells in rd1 and rd10 mice, strains with closely related retinal disease. In each, a mutation in the Pde6b gene causes photoreceptor dysfunction and death, but in rd10 mice degeneration starts after a peak in developmental plasticity of retinal circuitry and thereafter progresses more slowly. In vitro multielectrode action potential recordings revealed that spontaneous waves of correlated ganglion cell activity comparable to those in wild-type mice were present in rd1 and rd10 retinas before eye opening [postnatal day (P) 7 to P8]. In both strains, spontaneous firing rates increased by P14-P15 and were many times higher by 4-6 wk of age. Among rd1 ganglion cells, all responses to light had disappeared by ~P28, yet in rd10 retinas vigorous ON and OFF responses were maintained well beyond this age and were not completely lost until after P60. This difference in developmental time course separates mechanisms underlying the hyperactivity from those that alter light-driven responses in rd10 retinas. Moreover, several broad physiological groups of cells remained identifiable according to response polarity and time course as late as P60. This raises hope that visual function might be preserved or restored despite ganglion cell hyperactivity seen in inherited retinal degenerations, particularly if treatment or manipulation of early developmental plasticity were to be timed appropriately.
Collapse
Affiliation(s)
- Steven F Stasheff
- Department of Pediatrics (Neurology), The University of Iowa and The Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
13
|
Current concepts in the treatment of retinitis pigmentosa. J Ophthalmol 2010; 2011:753547. [PMID: 21048997 PMCID: PMC2964907 DOI: 10.1155/2011/753547] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 09/16/2010] [Indexed: 12/11/2022] Open
Abstract
Inherited retinal degenerations, including retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA), affect 1 in 4000 individuals in the general population. A majority of the genes which are mutated in these conditions are expressed in either photoreceptors or the retinal pigment epithelium (RPE). There is considerable variation in the clinical severity of these conditions; the most severe being autosomal recessive LCA, a heterogeneous retinal degenerative disease and the commonest cause of congenital blindness in children. Here, we discuss all the potential treatments that are now available for retinal degeneration. A number of therapeutic avenues are being explored based on our knowledge of the pathophysiology of retinal degeneration derived from research on animal models, including: gene therapy, antiapoptosis agents, neurotrophic factors, and dietary supplementation. Technological advances in retinal implant devices continue to provide the promise of vision for patients with end-stage disease.
Collapse
|
14
|
Nichols LL, Alur RP, Boobalan E, Sergeev YV, Caruso RC, Stone EM, Swaroop A, Johnson MA, Brooks BP. Two novel CRX mutant proteins causing autosomal dominant Leber congenital amaurosis interact differently with NRL. Hum Mutat 2010; 31:E1472-83. [PMID: 20513135 DOI: 10.1002/humu.21268] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Leber congenital amaurosis (LCA) is a congenital retinal dystrophy characterized by severe visual loss in infancy and nystagmus. Although most often inherited in an autosomal recessive fashion, rare individuals with mutations in the cone-rod homeobox gene, CRX, have dominant disease. CRX is critical for photoreceptor development and acts synergistically with the leucine-zipper transcription factor, NRL. We report on the phenotype of two individuals with LCA due to novel, de novo CRX mutations, c.G264T(p.K74N) and c.413delT(p.I138fs48), that reduce transactivation in vitro to 10% and 30% of control values, respectively. Whereas the c.413delT(p.I138fs48) mutant allows co-expressed NRL to transactivate independently at its normal, baseline level, the c.G264T(p.K74N) mutant reduces co-expressed NRL transactivation and reduces steady state levels of both proteins. Although both mutant proteins predominantly localize normally to the nucleus, they also both show variable cytoplasmic localization. These observations suggest that some CRX-mediated LCA may result from effects beyond haploinsufficiency, such as the mutant protein interefering with other transcription factors' function. Such patients would therefore not likely benefit from a simple, gene-replacement strategy for their disease.
Collapse
Affiliation(s)
- Lorenzo L Nichols
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Colella P, Cotugno G, Auricchio A. Ocular gene therapy: current progress and future prospects. Trends Mol Med 2008; 15:23-31. [PMID: 19097940 DOI: 10.1016/j.molmed.2008.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 12/16/2022]
Abstract
As gene therapy begins to produce its first clinical successes, interest in ocular gene transfer has grown owing to the favorable safety and efficacy characteristics of the eye as a target organ for drug delivery. Important advances also include the availability of viral and non-viral vectors that are able to efficiently transduce various ocular cell types, the use of intraocular delivery routes and the development of transcriptional regulatory elements that allow sustained levels of gene transfer in small and large animal models after a single administration. Here, we review recent progress in the field of ocular gene therapy. The first experiments in humans with severe inherited forms of blindness seem to confirm the good safety and efficacy profiles observed in animal models and suggest that gene transfer has the potential to become a valuable therapeutic strategy for otherwise untreatable blinding diseases.
Collapse
Affiliation(s)
- Pasqualina Colella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, 80131 Naples, Italy
| | | | | |
Collapse
|
16
|
|