1
|
Xie Y, Guo J, Hu J, Li Y, Zhang Z, Zhu Y, Deng F, Qi J, Zhou Y, Chen W. A factorial design-optimized microfluidic LNP vaccine elicits potent magnesium-adjuvating cancer immunotherapy. Mater Today Bio 2025; 32:101703. [PMID: 40230646 PMCID: PMC11994397 DOI: 10.1016/j.mtbio.2025.101703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/16/2025] Open
Abstract
Human papillomavirus (HPV)-associated cancers remain a critical health challenge, prompting the development of effective therapeutic vaccines. This study presents a lipid nanoparticle (LNP)-based vaccine co-loading E7 antigen peptide and magnesium ions as the adjuvant. Microfluidic technology was employed to optimize LNP preparation and formulation, ensuring efficient co-delivery of antigen and adjuvant. Magnesium ions were chosen over conventional aluminum-based adjuvants, which often suffer from limited efficacy and adverse effects, particularly for cancer immunotherapy. Compared to aluminum, magnesium ions exhibited superior capabilities in enhancing T-cell activation and promoting cellular immune response. Mechanistic insights suggest that magnesium ions facilitate dendritic cell maturation and antigen presentation via a collagen-CD36 axis, contributing to the adjuvant activity of magnesium. Through design of experiments (DoE) optimization, the LNP formulation was tailored for enhanced encapsulation and stability, positioning it as a targeted system for immune activation. These findings support the promise of magnesium ions as effective and safer adjuvants in LNP-based vaccines, marking a potential advancement for therapeutic cancer vaccination.
Collapse
Affiliation(s)
- Yongyi Xie
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiaxin Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jialin Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yuan Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Zhongqian Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yongcheng Zhu
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Fei Deng
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW, 2052, Australia
| | - Jialong Qi
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, PR China
| | - You Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wenjie Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| |
Collapse
|
2
|
Zhu T, Wang Y, Liu J, Zhang L, Dai Y, Xu D, Zhang Z. Preparation methods, structural features, biological activities and potential applications of Ophiopogon japonicus polysaccharides: An updated review. Int J Biol Macromol 2025; 290:139059. [PMID: 39710034 DOI: 10.1016/j.ijbiomac.2024.139059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Ophiopogon japonicus (O. japonicus) has a history of thousands of years as herbal medicine and nutritional food in China. Polysaccharides are one of the main bioactive components of O. japonicus. Various extraction methods and purification techniques have been employed to obtain O. japonicus polysaccharides (OJPs). Nevertheless, the structural characteristics of OJPs remain incompletely understood and require further investigation through the integration of advanced analytical techniques to uncover potential structure-activity relationships. Moreover, OJPs exhibit a variety of biological activities, such as regulating gut microbiota, providing cardiovascular protection, lowering blood glucose, and combating obesity. These diverse pharmacological effects make OJPs highly promising for widespread application in industries such as pharmaceuticals and food. Therefore, this review aims to provide a comprehensive overview of OJPs, covering their preparation methods, structural features, bioactivity, and structure-activity relationships. Here also emphasizes the significant promise of medicine and functional foods fields and advocating for their integration into clinical and industrial processes.
Collapse
Affiliation(s)
- Tongtong Zhu
- Department of pharmacy, Kunshan Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Yi Wang
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Ju Liu
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Lei Zhang
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Yujie Dai
- Department of pharmacy, Kunshan Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Dandan Xu
- Department of pharmacy, Kunshan Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Zepeng Zhang
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China.
| |
Collapse
|
3
|
Lan J, Feng D, He X, Zhang Q, Zhang R. Basic Properties and Development Status of Aluminum Adjuvants Used for Vaccines. Vaccines (Basel) 2024; 12:1187. [PMID: 39460352 PMCID: PMC11511158 DOI: 10.3390/vaccines12101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Aluminum adjuvants, renowned for their safety and efficacy, act as excellent adsorbents and vaccine immunogen enhancers, significantly contributing to innate, endogenous, and humoral immunity. An ideal adjuvant not only boosts the immune response but also ensures optimal protective immunity. Aluminum adjuvants are the most widely used vaccine adjuvants and have played a crucial role in both the prevention of existing diseases and the development of new vaccines. With the increasing emergence of new vaccines, traditional immune adjuvants are continually being researched and upgraded. The future of vaccine development lies in the exploration and integration of novel adjuvant technologies that surpass the capabilities of traditional aluminum adjuvants. One promising direction is the incorporation of nanoparticles, which offer precise delivery and controlled release of antigens, thereby enhancing the overall immune response. CONCLUSIONS This review summarizes the types, mechanisms, manufacturers, patents, advantages, disadvantages, and future prospects of aluminum adjuvants. Although aluminum adjuvants have certain limitations, their contribution to enhancing vaccine immunity is significant and cannot be ignored. Future research should continue to explore their mechanisms of action and address potential adverse reactions to achieve improved vaccine efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 117004, China; (J.L.); (D.F.); (Q.Z.)
| |
Collapse
|