1
|
Turan B, Onem Ozbilen E, Tacal Aslan B, Yilmaz OO. Investigation of MMP1 rs1799750 and TGF-ß1 rs1800470 polymorphisms in individuals with different vertical facial patterns and temporomandibular joint disorder. Angle Orthod 2025; 95:317-322. [PMID: 39933558 PMCID: PMC12017557 DOI: 10.2319/070324-528.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVES To evaluate the effects of rs1799750 1G/2G polymorphism of the MMP1 gene and rs1800470 T/C polymorphism of the TGF-ß1 gene on temporomandibular disk displacement and vertical facial development. MATERIALS AND METHODS Sixty-six individuals were examined radiographically prior to evaluation of the signs/symptoms of temporomandibular disorders according to the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD). Class II, hyperdivergent individuals with TMD (+) were assigned to Group 1, and individuals with TMD (-) were included in Group 2; while Class I, normodivergent individuals with TMD (-) were included in Group 3. For genetic analysis, oral mucosa swab samples were collected, and genotype analysis was performed. RESULTS The incidence of 2G alleles in Group 2 (72.7%) was significantly higher than the other groups (P < .05). ANB angle and mean Wits of the 1G/1G genotype of the MMP1 gene were significantly lower than 1G/2G and 2G/2G. Mean Go-Gn of the 1G/1G genotype was significantly higher than that of 1G/2G. The mean SNB of the TGF-β1 TT genotype was significantly higher than TC. The mean Co-Gn of TT was significantly higher than CC. CONCLUSIONS A relationship was found between the 2G allele of rs1799750 1G/2G polymorphisms of the MMP1 gene and the risk of individuals developing disk displacement. Also, it was found that TGF-ß1 gene rs1800470 29 T/C polymorphisms had a detrimental effect on mandibular development.
Collapse
Affiliation(s)
- Begum Turan
- Corresponding author: Dr Begum Turan, Marmara Universitesi Basibuyuk Saglik Yerleskesi, Dis Hekimligi Fakultesi, Ortodonti Anabilim Dali, Maltepe 9/34854, Istanbul, Turkey (e-mail: )
| | | | | | | |
Collapse
|
2
|
Chen J, Wu G, Wu J, Jiao Z. Sodium alginate microspheres loaded with Quercetin/Mg nanoparticles as novel drug delivery systems for osteoarthritis therapy. J Orthop Surg Res 2025; 20:300. [PMID: 40108592 PMCID: PMC11924703 DOI: 10.1186/s13018-025-05698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/09/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most prevalent arthritic disease characterized by cartilage degradation and low-grade inflammation, for which there remains a lack of efficacious therapeutic interventions. Notably, mitigating the impact of oxidative stress (OS) and inflammatory factors could help alleviate or hinder the advancement of OA. Given the benefits of both quercetin (Que) and Magnesium ion (Mg2+) in OA treatment, coupled with the structural properties of Que, we have innovatively developed the Que-Mg2+ nanoparticles (NPs), aiming to deliver both Que and Mg2+ simultaneously and achieve enhanced therapeutic outcomes for OA. Moreover, to avoid the adverse reactions linked to frequent injections, sodium alginate (SA) microspheres encapsulating Que-Mg2+ NPs (Que-Mg@SA) were designed to treat the H2O2-induced OA cell model. METHODS Que-Mg@SA microspheres were synthesized using the ionotropic gelation technique, with calcium chloride acting as the cross-linking agent. Comprehensive characterization of the Que-Mg@SA was conducted through transmission electron microscope (TEM), dynamic light scattering (DLS), optical microscope, and scanning electron microscope (SEM), which provided detailed insights into their size, zeta potential, morphology, and micromorphology. Additionally, the microsphere swelling rate and Que release were evaluated. The biocompatibility of Que-Mg@SA microspheres, along with their impact on chondrocyte viability, were detected through CCK-8 assay and live/dead cell staining. Furthermore, the antioxidant and anti-inflammatory properties of Que-Mg@SA were evaluated by examining the ROS scavenging ability and pro-inflammatory factors levels, respectively. Finally, the regulatory influence of Que-Mg@SA microspheres on extracellular matrix (ECM) metabolism in OA was assessed by immunofluorescence staining and Western blot. RESULTS Characterization results revealed that Que-Mg NPs exhibit nanoscale diameter, exceptional stability, and good dispersibility, while Que-Mg@SA possesses high entrapment efficiency (EE%) and loading efficiency (LE%), pronounced hygroscopic properties, and sustained drug-release capabilities. Additionally, in vitro cellular assays revealed that the biocompatible Que-Mg@SA microspheres significantly restored chondrocyte viability, scavenged H2O2-induced excessive ROS, reduced the levels of inflammatory cytokines, upregulated cartilage anabolic gene expression, downregulated cartilage catabolic protease gene expression, and maintained the metabolic balance of cartilage tissue. CONCLUSION The functionalized Que-Mg@SA microspheres developed in our study hold great promise as a drug delivery system for OA and potentially other biomedical applications. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jun Chen
- Department of Orthopedics, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, NO. 228 Jingui Road, Xian'an District, Xianning, Hubei, 437100, China
| | - Guoya Wu
- Department of Orthopedics, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, NO. 228 Jingui Road, Xian'an District, Xianning, Hubei, 437100, China
| | - Jian Wu
- Department of Orthopedics, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, NO. 228 Jingui Road, Xian'an District, Xianning, Hubei, 437100, China
| | - Zhijian Jiao
- Department of Orthopedics, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, NO. 228 Jingui Road, Xian'an District, Xianning, Hubei, 437100, China.
| |
Collapse
|
3
|
Wang H, Yan Y, Pathak JL, Hong W, Zeng J, Qian D, Hao B, Li H, Gu J, Jaspers RT, Wu G, Shao M, Peng G, Lan H. Quercetin prevents osteoarthritis progression possibly via regulation of local and systemic inflammatory cascades. J Cell Mol Med 2023; 27:515-528. [PMID: 36722313 PMCID: PMC9930437 DOI: 10.1111/jcmm.17672] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 02/02/2023] Open
Abstract
Due to the lack of effective treatments, osteoarthritis (OA) remains a challenge for clinicians. Quercetin, a bioflavonoid, has shown potent anti-inflammatory effects. However, its effect on preventing OA progression and the underlying mechanisms are still unclear. In this study, Sprague-Dawley male rats were divided into five groups: control group, OA group (monosodium iodoacetate intra-articular injection), and three quercetin-treated groups. Quercetin-treated groups were treated with intragastric quercetin once a day for 28 days. Gross observation and histopathological analysis showed cartilage degradation and matrix loss in the OA group. High-dose quercetin-group joints showed failure in OA progression. High-dose quercetin inhibited the OA-induced expression of MMP-3, MMP-13, ADAMTS4, and ADAMTS5 and promoted the OA-reduced expression of aggrecan and collagen II. Levels of most inflammatory cytokines and growth factors tested in synovial fluid and serum were upregulated in the OA group and these increases were reversed by high-dose quercetin. Similarly, subchondral trabecular bone was degraded in the OA group and this effect was reversed in the high-dose quercetin group. Our findings indicate that quercetin has a protective effect against OA development and progression possibly via maintaining the inflammatory cascade homeostasis. Therefore, quercetin could be a potential therapeutic agent to prevent OA progression in risk groups.
Collapse
Affiliation(s)
- Haiyan Wang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Yongyong Yan
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Janak L. Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Wei Hong
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Jing Zeng
- Liwan Central Hospital of GuangzhouGuangzhouChina
| | - Dongyang Qian
- Department of Orthopaedics, The First Affiliated HospitalGuangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant MaterialsGuangzhouChina
| | - Binwei Hao
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina,Department of Pulmonary and Critical Care Medicine, Shanxi Bethune HospitalShanxi Academy of Medical SciencesTaiyuanChina
| | - Haiqing Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jinlan Gu
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Richard T. Jaspers
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement SciencesVrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA)Vrije Universiteit Amsterdam, Amsterdam Movement ScienceAmsterdamThe Netherlands
| | - Ming Shao
- Department of Orthopaedic SurgeryThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Haifeng Lan
- Department of Orthopaedic SurgeryThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Almeida LE, Doetzer A, Beck ML. Immunohistochemical Markers of Temporomandibular Disorders: A Review of the Literature. J Clin Med 2023; 12:jcm12030789. [PMID: 36769438 PMCID: PMC9917491 DOI: 10.3390/jcm12030789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Temporomandibular disorders (TMD) are a group of internal derangements encompassing dysfunction, displacement, degeneration of the temporomandibular joints and surroundings muscles of mastication, often accompanied by pain. Relationships between TMD and various chemical biomarkers have been examined throughout the years. This paper aims to gather evidence from the literature regarding other biomarkers and presenting them as one systematic review to investigate the potential links between TMD and different biochemical activity. To identify relevant papers, a comprehensive literature search was carried out in MEDLINE/PubMED, EMBASE, Web of Science and a manual search was performed in the International Journal of Oral and Maxillofacial Surgery, Journal of Oral and Maxillofacial surgery, and Journal of Cranio-Maxillo-Facial Surgery. The literature review produced extensive results relating to the biochemical and immunohistochemical markers of TMD. Many enzymes, inflammatory markers, proteoglycans, and hormones were identified and organized in tables, along with a brief description, study design, and conclusion of each study. Through this review, recurring evidence provides confidence in suggesting involvement of certain biomarkers that may be involved in this complex pathogenesis, in addition to pointing to differences in gender prevalence of TMD. However, more organized research on large human samples needs to be conducted to delve deeper into the understanding of how this disease develops and progresses.
Collapse
Affiliation(s)
- Luis Eduardo Almeida
- Surgical Sciences Department, School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
- Correspondence:
| | - Andrea Doetzer
- Faculdade de Odontologia, Pontificia Universidade Catolica do Parana, Curitiba 80215-901, Brazil
| | - Matthew L. Beck
- Surgical Sciences Department, School of Dentistry, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
5
|
Fernandes BV, Brancher JA, Michels AC, Nagashima S, Johann ACBR, Bóia Ferreira M, da Costa DJ, Rebellato NLB, Klüppel LE, Scariot R, Zielak JC. Immunohistochemical panel of degenerated articular discs from patients with temporomandibular joint osteoarthritis. J Oral Rehabil 2020; 47:1084-1094. [PMID: 32524653 DOI: 10.1111/joor.13034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Temporomandibular joint osteoarthritis (TMJOA) is a progressive degenerative disease caused by imbalance between anabolic and catabolic stimuli. OBJECTIVE The aim of this study was to evaluate histopathological changes, collagen degeneration and the expression of eleven TMJOA biomarkers in articular discs. METHODS Specimens were obtained from eight female patients submitted to discectomy. Discs were divided into anterior band (AB), intermediate zone (IZ) and posterior band (PB) for computerised histomorphometric analyses. Each was assigned a histopathological degeneration score (HDS). Collagen degeneration was assessed with Picrosirius-polarisation method. Biomarkers were evaluated through immunohistochemistry, including IGF-1, OPG, VEGF, TNF-α, FGF-23, IHH, MMP-3, MMP-9, TGF-β1 , BMP-2 and WNT-3. Image processing software was used to calculate average immature collagen ratios and immunostained areas. Spearman rank tests were applied to verify correlations, with significance level of 0.05. RESULTS The HDS showed negative correlation with expression of VEGF in IZ and PB (P < .05) and positive with TNF-α in AB (P < .01). Collagen degeneration correlated with TGF-β1 (P < .05), BMP-2 (P < .01) and IHH (P < .05) immunostained areas in the IZ; TGF-β1, BMP-2 and IHH expression correlated among each other in AB and IZ (P < .05). CONCLUSION Angiogenesis and tissue fragmentation may result from aberrant physiologic responses mediated by VEGF and TNF-α, compromising TMJ discs during OA progression. The expression of TGF-β1, BMP-2 and IHH could be related to collagen degeneration in displaced discs and may participate in TMJOA pathogenesis.
Collapse
Affiliation(s)
| | - João A Brancher
- School of Health Sciences, Universidade Positivo, Curitiba, Brazil.,School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Arieli C Michels
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Seigo Nagashima
- School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Marianna Bóia Ferreira
- School of Health Sciences, Universidade Positivo, Curitiba, Brazil.,School of Biological Sciences, Department of Cell Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Delson J da Costa
- School of Health Sciences, Department of Oral and Maxillofacial Surgery, Universidade Federal do Paraná, Curitiba, Brazil
| | - Nelson Luis B Rebellato
- School of Health Sciences, Department of Oral and Maxillofacial Surgery, Universidade Federal do Paraná, Curitiba, Brazil
| | - Leandro E Klüppel
- School of Health Sciences, Department of Oral and Maxillofacial Surgery, Universidade Federal do Paraná, Curitiba, Brazil
| | - Rafaela Scariot
- School of Health Sciences, Universidade Positivo, Curitiba, Brazil.,School of Health Sciences, Department of Oral and Maxillofacial Surgery, Universidade Federal do Paraná, Curitiba, Brazil
| | - João C Zielak
- School of Health Sciences, Universidade Positivo, Curitiba, Brazil
| |
Collapse
|
6
|
Matrix Metalloproteinases and Temporomandibular Joint Disorder: A Review of the Literature. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Temporomandibular disorders (TMD) are progressive degenerative disorders that affect the components of the temporomandibular joint (TMJ), characterized by pain and limitations in function. Matrix metalloproteinases (MMP) are enzymes involved in physiological breakdown of tissue that can have a pathological effect from an increase in activity during inflammation. A PubMed search of the current literature (within the past 10 years) was conducted to identify human studies involving matrix metalloproteinases activity in TMJ components of patients with TMD. Two separate searches results in 34 studies, six of which met inclusion criteria. Immunohistochemistry and gene analysis were used to evaluate MMP expression in the study groups. This review showed the strongest evidence for involvement of MMP-1, MMP-2, and MMP-9 in TMD; however, limitations included low sample sizes and a lack of recent clinical studies. Future research with more definitive conclusions could allow for additional pharmaceutical targets in MMP when treating patients with temporomandibular disorders.
Collapse
|
7
|
Li L, Zhang L, Zhang Y, Jiang D, Xu W, Zhao H, Huang L. Inhibition of Long Non-coding RNA CTD-2574D22.4 Alleviates LPS-induced Apoptosis and Inflammatory Injury of Chondrocytes. Curr Pharm Des 2019; 25:2969-2974. [PMID: 31368870 DOI: 10.2174/1381612825666190801141801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/26/2019] [Indexed: 01/22/2023]
Abstract
Background:
Osteoarthritis (OA) is a common joint disease characterized by cartilage degeneration.
Long non-coding RNAs (lncRNAs) have been associated with inflammatory diseases, including OA. Here, we
investigated the potential molecular role of lncRNAs in OA pathogenesis.
Methods:
ATDC5 cells were treated with lipopolysaccharides (LPS), and qPCR was used to identify and determine
expression of potential lncRNAs involved in LPS-induced chondrocyte injury. Cell viability, apoptosis, and expression
of cartilage-related genes and inflammatory cytokines were assessed after CTD-2574D22.4 knockdown.
Results:
After LPS stimulation, CTD-2574D22.4 was found to be the second highest up-regulated gene, and the
enhanced expression was validated in OA chondrocytes. Moreover, CTD-2574D22.4 inhibition significantly rescued
cell viability, suppressed by LPS stress, and markedly attenuated LPS-induced apoptosis. The expression of
cartilage-degrading enzymes MMP-13 and ADAMTS-5 were increased, while type II collagen was reduced after
LPS treatment. This trend was largely reversed by CTD-2574D22.4 knockdown. Additionally, mRNA and protein
levels of key inflammatory cytokines (TNF-a, IL-6, and IL-1β) were significantly elevated in the LPS group and
partially relieved upon CTD-2574D22.4 knockdown.
Conclusion:
CTD2574D22.4 knockdown ameliorates LPS-induced cartilage injury by protecting chondrocytes
from apoptosis via anti-inflammation and anti- cartilage-degrading pathways. Thus, CTD2574D22.4 might be a
potential diagnostic and therapeutic target for OA.
Collapse
Affiliation(s)
- Lisong Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| | - Lianfang Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| | - Yong Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| | - Dinghua Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| | - Wu Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| | - Haiyue Zhao
- Center of Reproduction and Genetics, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou, Jiangsu 215002, China
| | - Lixin Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, No.188 Shizi Road, Suzhou 215006, China
| |
Collapse
|
8
|
Li W, Zhao S, Yang H, Zhang C, Kang Q, Deng J, Xu Y, Ding Y, Li S. Potential Novel Prediction of TMJ-OA: MiR-140-5p Regulates Inflammation Through Smad/TGF-β Signaling. Front Pharmacol 2019; 10:15. [PMID: 30728776 PMCID: PMC6351446 DOI: 10.3389/fphar.2019.00015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/07/2019] [Indexed: 01/10/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ-OA), mainly exhibit extracellular matrix loss and condylar cartilage degradation, is the most common chronic and degenerative maxillofacial osteoarthritis; however, no efficient therapy for TMJ-OA exists due to the poor understanding of its pathological progression. MicroRNA (miR)-140-5p is a novel non-coding microRNAs (miRNAs) that expressed in osteoarthritis specifically. To investigate the molecular mechanisms of miR-140-5p in TMJ-OA, primary mandibular condylar chondrocytes (MCCs) from C57BL/6N mice were treated with interleukins (IL)-1β or transfected with miR-140-5p mimics or inhibitors, respectively. The expression of matrix metallopeptidase (MMP)-13, miR-140-5p, nuclear factor (NF)-kB, Smad3 and transforming growth factor (TGF)-β3 were examined by western blotting or quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The interaction between the potential binding sequence of miR-140-5p and the 3'-untranslated region (3'UTR) of Smad3 mRNA was testified by dual-luciferase assay. Small Interfering RNA of Smad3 (Si-Smad3) was utilized to further identify the role of Smad3 mediated by miR-140-5p. The data showed MMP13, miR-140-5p and NF-kB increased significantly in response to IL-1β inflammatory response in MCCs, meanwhile, Smad3 and TGF-β3 reduced markedly. Moreover, transfection of miR-140-5p mimics significantly suppressed the expression of Smad3 and TGF-β3 in MCCs, while miR-140-5p inhibitors acted in a converse manner. As the luciferase reporter of Smad3 mRNA observed active interaction with miR-140-5p, Smad3 was identified as a direct target of miR-140-5p. Additionally, the expression of TGF-β3 was regulated upon the activation of Smad3. Together, these data suggested that miR-140-5p may play a role in regulating mandibular condylar cartilage homeostasis and potentially serve as a novel prognostic factor of TMJ-OA-like pathology.
Collapse
Affiliation(s)
- Weihao Li
- Department of Dental Research, School of Stomatology, Kunming Medical University, Kunming, China
| | - Shurong Zhao
- Department of Dental Research, School of Stomatology, Kunming Medical University, Kunming, China
| | - Hefeng Yang
- Department of Dental Research, School of Stomatology, Kunming Medical University, Kunming, China
| | - Chao Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Qiang Kang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie Deng
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook, NY, United States
| | - Yanhua Xu
- Department of Dental Research, School of Stomatology, Kunming Medical University, Kunming, China
| | - Yu Ding
- Department of Dental Research, School of Stomatology, Kunming Medical University, Kunming, China
| | - Song Li
- Department of Dental Research, School of Stomatology, Kunming Medical University, Kunming, China
| |
Collapse
|
9
|
Wang C, Al-Ani MK, Sha Y, Chi Q, Dong N, Yang L, Xu K. Psoralen Protects Chondrocytes, Exhibits Anti-Inflammatory Effects on Synoviocytes, and Attenuates Monosodium Iodoacetate-Induced Osteoarthritis. Int J Biol Sci 2019; 15:229-238. [PMID: 30662362 PMCID: PMC6329921 DOI: 10.7150/ijbs.28830] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Current study examined whether psoralen (PSO) exhibits anti-inflammatory responses, protection and activation of chondrocytes, and relieve osteoarthritis (OA). Rats chondrocytes and human synoviocytes were cultured in tumor necrosis factor-α (TNF-α) conditioned culture medium with/without PSO to test the cell morphologies and cytotoxicities in vitro. Cartilaginous extracellular matrix (ECM) and proliferative gene/protein expression levels were evaluated in chondrocytes. Meanwhile, matrix metalloproteinases (MMPs) and interleukins (ILs) gene/protein expression were analyzed in synoviocytes. SD rats of monosodium iodoacetate (MIA) induced OA model were used in order to assess the effects of PSO on attenuating degeneration of the articular cartilage in vivo. Results showed TNF-α conditioned culturing with/without PSO (1-100 µM) had no any toxicity on both the cell lines. PSO (10 µM) activated cartilaginous specific ECM expression along with up-regulation of proliferative genes at transcriptional levels. Interestingly, PSO significantly reversed TNF-α induced up-regulation of MMP13 and ILs synoviocytes in a dose-dependent manner (1 to 20 µM), while down-regulated cartilaginous ECM production. Following six weeks of PSO treatments to articular cartilage osteoarthritis, compared to MIA-induced group, the appearance and physiological structure of articular cartilage was more integrated with greatly organized chondrocytes and abundant cartilage matrix. In conclusion, PSO protects and activates chondrocytes, antagonizing the expression of MMPs and ILs secreted by synovial cells, and effectively attenuates MIA-induced OA.
Collapse
Affiliation(s)
- Chunli Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, P.R. China
| | - Mohanad Kh Al-Ani
- Tikrit Universtiy, College of medicine, department of microbiology, P.O. Box (45) Salahaddin province, Tikrit, Iraq
| | - Yongqiang Sha
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Yang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, P.R. China
| | - Kang Xu
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, P.R. China.,Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Gao G, Ding H, Zhuang C, Fan W. Effects of Hesperidin on H₂O₂-Treated Chondrocytes and Cartilage in a Rat Osteoarthritis Model. Med Sci Monit 2018; 24:9177-9186. [PMID: 30557884 PMCID: PMC6319163 DOI: 10.12659/msm.913726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The purpose of this research was to investigate the effects of hesperidin on hydrogen peroxide (H2O2)-induced chondrocytes injury and cartilage degeneration in a rat model of osteoarthritis (OA). Material/Methods Chondrocytes were isolated from rat knee joints and treated with hesperidin alone or combined with H2O2. Then, Cell Counting Kit-8 (CCK-8) assay was used to assess cell viability. Activity of reactive oxygen species (ROS) and levels of malondialdehyde (MDA) were estimated. Cell apoptosis was assessed by flow cytometry assay. In addition, gene expression levels were measured for caspase 3, tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), collagen type II (Col2a1), aggrecan, (sex-determining region Y)-box 9 (SOX9), matrix metalloproteinase (MMP)-13, and inducible nitric oxide synthase (iNOS) through quantitative real-time polymerase chain reaction (qPCR). To examine the effects on cartilage destruction in vivo, hesperidin or vehicle control were orally administrated in a surgically-induced osteoarthritis (OA) model. Results The results indicated that hesperidin pretreatment of chondrocytes reduce H2O2-induced cytotoxicity and apoptosis. Hesperidin pretreatment decreased the formation of MDA and intracellular ROS, including chondrocyte apoptosis. Hesperidin also reversed the activity of H2O2 on inhibiting the Col2a1, aggrecan, and SOX9 gene expression and increasing the gene expression of caspase 3, IL-1β, TNFα, iNOS, and MMP13. In addition, hesperidin administration markedly attenuated cartilage destruction and reduced IL-1β and TNF-α levels in a surgically-induced OA model. Conclusions Our study suggests that hesperidin can prevent H2O2-induced chondrocytes injury through its antioxidant effects in vitro and reduce cartilage damage in a rat model of OA.
Collapse
Affiliation(s)
- Gongming Gao
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| | - Huimin Ding
- Department of Orthopedics, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Chao Zhuang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China (mainland)
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|