1
|
Wang H, Xiao Y, Zhou W, Li Y. Integrated analysis and validation reveal CYTH4 as a potential prognostic biomarker in acute myeloid leukemia. Oncol Lett 2024; 27:103. [PMID: 38298432 PMCID: PMC10829077 DOI: 10.3892/ol.2024.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/28/2023] [Indexed: 02/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a clonal hematological malignancy with high mortality rates. The identification of novel markers is urgent for AML. Cytohesins are a subfamily of guanine nucleotide exchange factors activating the ADP-ribosylation factor family GTPases. While the important roles of cytohesins have been reported in various cancers, their function in AML remains unclear. The present study aimed to explore the prognostic impact of cytohesin-4 (CYTH4) and the underlying molecular functions. RNA sequencing and AML clinical data were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases to investigate gene expression and survival. Using the R software, differentially expressed genes were identified between the high- and the low-CYTH4 group. Functional enrichment analysis was conducted by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analyses. The CIBERSORTx tool was used to explore the proportions of different immune cell types. The molecular function of CYTH4 was also validated in vitro by examining cell growth, cell cycle, apoptosis and colony-forming ability. CYTH4 was significantly upregulated in AML compared with other cancers and normal tissues. High CYTH4 expression was associated with high white blood count (P=0.004) and higher risk status (P<0.001). Patients with high CYTH4 expression had poor overall survival (OS; HR=2.19; 95% CI, 1.40-3.44; P=0.0006; high vs. low) and event-free survival (EFS; HR=2.32; 95% CI, 1.43-3.75; P=0.0006; high vs. low), and these patients could benefit from transplantation (HR=0.29; 95% CI, 0.18-0.47; P<0.0001; transplantation vs. chemotherapy). Multivariate analysis showed that high CYTH4 expression was independently associated with inferior OS (HR=2.49; 95% CI, 1.28-4.83; P=0.007) and EFS (HR=2.56; 95% CI, 1.48-4.42; P=0.001). Functional analysis showed that CYTH4 was involved in immunoregulation. In vitro validation showed knockdown of CYTH4 adversely affected cell growth and induced cell apoptosis, while overexpression of CYTH4 enhanced cell growth. Taken together, CYTH4 is expressed at high levels in AML and can potentially function as a prognostic biomarker.
Collapse
Affiliation(s)
- Hong Wang
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, Guangdong 518071, P.R. China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Yishu Xiao
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, Guangdong 518071, P.R. China
| | - Wei Zhou
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, Guangdong 518071, P.R. China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Yonghui Li
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, Guangdong 518071, P.R. China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Carlson International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
2
|
Fang XL, Li QJ, Lin JY, Huang CL, Huang SY, Tan XR, He SW, Zhu XH, Li JY, Gong S, Qiao H, Li YQ, Liu N, Ma J, Zhao Y, Tang LL. Transcription factor ATMIN facilitates chemoresistance in nasopharyngeal carcinoma. Cell Death Dis 2024; 15:112. [PMID: 38321024 PMCID: PMC10847093 DOI: 10.1038/s41419-024-06496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Despite that the docectaxel-cisplatin-5-fluorouracil (TPF) induction chemotherapy has greatly improved patients' survival and became the first-line treatment for advanced nasopharyngeal carcinoma (NPC), not all patients could benefit from this therapy. The mechanism underlying the TPF chemoresistance remains unclear. Here, by analyzing gene-expression microarray data and survival of patients who received TPF chemotherapy, we identify transcription factor ATMIN as a chemoresistance gene in response to TPF chemotherapy in NPC. Mass spectrometry and Co-IP assays reveal that USP10 deubiquitinates and stabilizes ATMIN protein, resulting the high-ATMIN expression in NPC. Knockdown of ATMIN suppresses the cell proliferation and facilitates the docetaxel-sensitivity of NPC cells both in vitro and in vivo, while overexpression of ATMIN exerts the opposite effect. Mechanistically, ChIP-seq combined with RNA-seq analysis suggests that ATMIN is associated with the cell death signaling and identifies ten candidate target genes of ATMIN. We further confirm that ATMIN transcriptionally activates the downstream target gene LCK and stabilizes it to facilitate cell proliferation and docetaxel resistance. Taken together, our findings broaden the insight into the molecular mechanism of chemoresistance in NPC, and the USP10-ATMIN-LCK axis provides potential therapeutic targets for the management of NPC.
Collapse
Affiliation(s)
- Xue-Liang Fang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Qing-Jie Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jia-Yi Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Cheng-Long Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Sheng-Yan Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Xi-Rong Tan
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Shi-Wei He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Xun-Hua Zhu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jun-Yan Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Sha Gong
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Han Qiao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Ying-Qin Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Na Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Yin Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China.
| | - Ling-Long Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China.
| |
Collapse
|
3
|
Karapetyan L, AbuShukair HM, Li A, Knight A, Al Bzour AN, MacFawn IP, Thompson ZJ, Chen A, Yang X, Dadey R, Karunamurthy A, De Stefano DV, Sander C, Kunning SR, Najjar YG, Davar D, Luke JJ, Gooding W, Bruno TC, Kirkwood JM, Storkus WJ. Expression of lymphoid structure-associated cytokine/chemokine gene transcripts in tumor and protein in serum are prognostic of melanoma patient outcomes. Front Immunol 2023; 14:1171978. [PMID: 37435077 PMCID: PMC10332263 DOI: 10.3389/fimmu.2023.1171978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
Background Proinflammatory chemokines/cytokines support development and maturation of tertiary lymphoid structures (TLS) within the tumor microenvironment (TME). In the current study, we sought to investigate the prognostic value of TLS-associated chemokines/cytokines (TLS-kines) expression levels in melanoma patients by performing serum protein and tissue transcriptomic analyses, and to then correlate these data with patients clinicopathological and TME characteristics. Methods Levels of TLS-kines in patients' sera were quantitated using a custom Luminex Multiplex Assay. The Cancer Genomic Atlas melanoma cohort (TCGA-SKCM) and a Moffitt Melanoma cohort were used for tissue transcriptomic analyses. Associations between target analytes and survival outcomes, clinicopathological variables, and correlations between TLS-kines were statistically analyzed. Results Serum of 95 patients with melanoma were evaluated; 48 (50%) female, median age of 63, IQR 51-70 years. Serum levels of APRIL/TNFSF13 were positively correlated with levels of both CXCL10 and CXCL13. In multivariate analyses, high levels of serum APRIL/TNFSF13 were associated with improved event-free survival after adjusting for age and stage (HR = 0.64, 95% CI 0.43-0.95; p = 0.03). High expression of APRIL/TNFSF13 tumor transcripts was significantly associated with improved OS in TCGA-SKCM (HR = 0.69, 95% CI 0.52-0.93; p = 0.01) and in Moffitt Melanoma patients (HR = 0.51, 95% CI: 0.32-0.82; p = 0.006). Further incorporation of CXCL13 and CXCL10 tumor transcript levels in a 3-gene index revealed that high APRIL/CXCL10/CXCL13 expression was associated with improved OS in the TCGA SKCM cohort (HR = 0.42, 95% CI 0.19-0.94; p = 0.035). Melanoma differentially expressed genes positively associated with high APRIL/CXCL10/CXCL13 tumor expression were linked to tumor infiltration by a diverse array of proinflammatory immune cell types. Conclusion Serum protein and tumor transcript levels of APRIL/TNFSF13 are associated with improved survival outcomes. Patients exhibiting high coordinate expression of APRIL/CXCL10/CXCL13 transcripts in their tumors displayed superior OS. Further investigation of TLS-kine expression profiles related to clinical outcomes in larger cohort studies is warranted.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | | | - Aofei Li
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Andrew Knight
- Department of Medicine, Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Ayah Nedal Al Bzour
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ian P. MacFawn
- Department of Immunology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Zachary J. Thompson
- Department of Bioinformatics and Biostatistics, The Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Ann Chen
- Department of Bioinformatics and Biostatistics, The Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Xi Yang
- Department of Medicine, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Boston, MA, United States
| | - Rebekah Dadey
- Department of Immunology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Arivarasan Karunamurthy
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | | | - Cindy Sander
- Department of Immunology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Sheryl R. Kunning
- Department of Immunology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Yana G. Najjar
- Department of Medicine, Hillman Cancer Center, Division of Hematology/Oncology; University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Diwakar Davar
- Department of Medicine, Hillman Cancer Center, Division of Hematology/Oncology; University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Jason J. Luke
- Department of Medicine, Hillman Cancer Center, Division of Hematology/Oncology; University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - William Gooding
- Hillman Cancer Center Biostatistics Facility, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States
| | - Tullia C. Bruno
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John M. Kirkwood
- Department of Medicine, Hillman Cancer Center, Division of Hematology/Oncology; University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
| | - Walter J. Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Departments of Dermatology, Pathology and Bioengineering, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Guan Y, Xu B, Sui Y, Li H, Chen Z, Luan Y, Yang R, Qi W, Guan Q. Cytohesin-4 Upregulation in Glioma-Associated M2 Macrophages Is Correlated with Pyroptosis and Poor Prognosis. J Mol Neurosci 2023; 73:143-158. [PMID: 36749492 DOI: 10.1007/s12031-023-02104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023]
Abstract
Cytohesin-4 (CYTH4) is a member of the PSCD family. Members of this family appear to mediate the regulation of protein sorting and membrane trafficking. In previous studies, CYTH4 has been linked with multiple brain diseases, but not glioma, the most common type of brain tumor. We utilized multiple glioma single-cell RNA sequencing datasets and bulk data from the TCGA and CGGA and conducted GSEA and KEGG and GO analyses. Biomarker potential was tested via ROC curve analysis. Radar plots were used to study TMB and MSI correlations. Immune cell studies were conducted using CIBERSORT. All statistical analyses were performed in R software and GraphPad Prism 9. CYTH4 was overexpressed in the glioma macrophage population in several single-cell RNA sequencing datasets and was most correlated with M2 macrophages. CYTH4 expression was higher in tumor tissues and was correlated with survival and WHO grade. ROC curves suggested CYTH4 overexpression to be a potential glioma biomarker. GSEA results indicated a relationship between CYTH4 and apoptosis, and PPI analysis supported a pyroptosis correlation. KEGG and GO analysis results linked CYTH4 with antigen processing and presentation and neutrophil activities. In summary, the study identified a CYTH4/pyroptosis/M2 macrophage axis. CYTH4 was upregulated in M2 macrophages in glioma and affected pyroptosis. CYTH4 overexpression is a potential biomarker predicting a poor prognosis.
Collapse
Affiliation(s)
- Yiming Guan
- Faculty of Medical Laboratory Science, Ruijin Hospital,, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Xu
- Department of Neurology, The First People's Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China
| | - Yi Sui
- Department of Neurology, The First People's Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China
| | - Hui Li
- Department of Neurology, The First People's Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China
| | - Zhezhou Chen
- Department of Laboratory Medicine, The First People's Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China
| | - Yu Luan
- Department of Laboratory Medicine, The First People's Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China
| | - Ruijia Yang
- Department of Laboratory Medicine, The First People's Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China
| | - Wanshun Qi
- Department of Laboratory Medicine, The First People's Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China
| | - Qi Guan
- Department of Laboratory Medicine, The First People's Hospital of Shenyang (Shenyang Brain Hospital), Shenyang Medical College, Shenyang, China.
| |
Collapse
|
5
|
Wu C, Qin C, Long W, Wang X, Xiao K, Liu Q. Tumor antigens and immune subtypes of glioblastoma: the fundamentals of mRNA vaccine and individualized immunotherapy development. JOURNAL OF BIG DATA 2022; 9:92. [PMID: 35855914 PMCID: PMC9281265 DOI: 10.1186/s40537-022-00643-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/27/2022] [Indexed: 05/08/2023]
Abstract
PURPOSE Glioblastoma (GBM) is the most common primary brain tumor in adults and is notorious for its lethality. Given its limited therapeutic measures and high heterogeneity, the development of new individualized therapies is important. mRNA vaccines have exhibited promising performance in a variety of solid tumors, those designed for glioblastoma (GBM) need further development. The aim of this study is to explore tumor antigens for the development of mRNA vaccines against GBM and to identify potential immune subtypes of GBM to identify the patients suitable for different immunotherapies. METHODS RNA-seq data and the clinical information of 143 GBM patients was extracted from the TCGA database; microarray data and the clinical information of 181 GBM patients was obtained from the REMBRANDT cohort. A GBM immunotherapy cohort of 17 patients was obtained from a previous literature. GEPIA2, cBioPortal, and TIMER2 were used to identify the potential tumor antigens. Immune subtypes and gene modules were identified using consensus clustering; immune landscape was constructed using graph-learning-based dimensionality reduction analysis. RESULTS Nine potential tumor antigens associated with poor prognosis and infiltration of antigen-presenting cells were identified in GBM: ADAMTSL4, COL6A1, CTSL, CYTH4, EGFLAM, LILRB2, MPZL2, SAA2, and LSP1. Four robust immune subtypes and seven functional gene modules were identified and validated in an independent cohort. Immune subtypes had different cellular and molecular characteristics, with IS1, an immune cold phenotype; IS2, an immune hot and immunosuppressive phenotype; IS3, a relatively immune cold phenotype, second only to IS1; IS4, having a moderate tumor immune microenvironment. Immune landscape revealed the immune distribution of the GBM patients. Additionally, the potential value of immune subtypes for individualized immunotherapy was demonstrated in a GBM immunotherapy cohort. CONCLUSIONS ADAMTSL4, COL6A1, CTSL, CYTH4, EGFLAM, LILRB2, MPZL2, SAA2, and LSP1 are the candidate tumor antigens for mRNA vaccine development in GBM, and IS1 GBM patients are best suited for mRNA vaccination, IS2 patients are best suited for immune checkpoint inhibitor. This study provides a theoretical framework for GBM mRNA vaccine development and individualized immunotherapy strategies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40537-022-00643-x.
Collapse
Affiliation(s)
- Changwu Wu
- Department of Neurosurgery, Xiangya Hospital, Central-South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Chaoying Qin
- Department of Neurosurgery, Xiangya Hospital, Central-South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Wenyong Long
- Department of Neurosurgery, Xiangya Hospital, Central-South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Xiangyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central-South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Kai Xiao
- Department of Neurosurgery, Xiangya Hospital, Central-South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central-South University, 87 Xiangya Road, Changsha, 410008 Hunan People’s Republic of China
- Institute of Skull Base Surgery and Neuro-Oncology at Hunan, Changsha, China
| |
Collapse
|
6
|
Xu T, Yu S, Zhang J, Wu S. Dysregulated tumor-associated macrophages in carcinogenesis, progression and targeted therapy of gynecological and breast cancers. J Hematol Oncol 2021; 14:181. [PMID: 34717710 PMCID: PMC8557603 DOI: 10.1186/s13045-021-01198-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Gynecological and breast cancers are a group of heterogeneous malignant tumors. Although existing treatment strategies have ameliorated the clinical outcomes of patients, the overall survival rate of advanced diseases remains unsatisfactory. Increasing evidence has indicated that the development and prognosis of tumors are closely related to the tumor microenvironment (TME), which restricts the immune response and provokes malignant progression. Tumor-associated macrophages (TAMs) are the main component of TME and act as a key regulator in tumor metastasis, immunosuppression and therapeutic resistance. Several preclinical trials have studied potential drugs that target TAMs to achieve potent anticancer therapy. This review focuses on the various functions of TAMs and how they influence the carcinogenesis of gynecological and breast cancers through regulating cancer cell proliferation, tumor angiogenesis and tumor-related immunosuppression. Besides, we also discuss the potential application of disabling TAMs signaling as a part of cancer therapeutic strategies, as well as CAR macrophages, TAMs-based vaccines and TAMs nanobiotechnology. These research advances support that targeting TAMs combined with conventional therapy might be used as effective therapeutics for gynecological and breast cancers in the future.
Collapse
Affiliation(s)
- Tianhan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|