1
|
Li J, Liu J, Tang Y, Zhang H, Zhang Y, Zha X, Zhao X. Role of C/EBP Homologous Protein (CHOP) and Nupr1 Interaction in Endoplasmic Reticulum Stress-Induced Apoptosis of Lens Epithelial Cells. Mol Biotechnol 2025; 67:1628-1640. [PMID: 38771421 PMCID: PMC11928426 DOI: 10.1007/s12033-024-01148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 05/22/2024]
Abstract
Our study mainly analyzed the mechanism of C/EBP homologous protein (CHOP) and its interacting protein Nupr1 on endoplasmic reticulum stress (ERS) induced lens epithelial cells (LEC) apoptosis. Cell proliferation was detected by CCK-8. Apoptosis was detected by flow cytometry and TUNEL. Nupr1 expression was detected by RT-qPCR. The expressions of CHOP, Nupr1, apoptosis-related protein, and ERS-related protein were detected by Western blot. DCFH-DA probe was used to detect cell ROS. The SOD, GSH-PX, and MDA contents were detected by the kit. Co-IP was used to detect the interaction between CHOP and Nupr1. The morphology of the lens was detected by HE staining. The result shows that Tunicamycin (TU) can induce endoplasmic reticulum stress and apoptosis in LEC in a concentration-dependent manner. TU induction leads to the occurrence of CHOP nuclear translocation. Overexpression of CHOP can further enhance the inhibitory effect of TU on LEC proliferation and the promotion of apoptosis, while knockdown of CHOP has the opposite effect. CHOP and Nupr1 are interacting proteins, and knockdown of Nupr1 or addition of Nupr1 inhibitor ZZW-115 can reverse the effects of TU and overexpression of CHOP, respectively. It has been observed in animal experiments that treatment with oe-CHOP can further aggravate the pathological lesions of the rat lens, while ZZW-115 can reverse the effect of oe-CHOP to a certain extent and improve the lesions of the rat lens. Overall, CHOP interacts with Nupr1 to regulate apoptosis caused by ERS and mediate cataract progression in rats, and this study provides a new potential therapeutic target for the treatment of cataract.
Collapse
Affiliation(s)
- Jinghua Li
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Junyi Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Yongying Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Hong Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Yuanping Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China
| | - Xu Zha
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China.
| | - Xueying Zhao
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Avenue, Wuhua District, Kunming, 650000, Yunnan, China.
| |
Collapse
|
2
|
Pacheco AIP. Cataractogenesis and molecular pathways, with reactive free oxygen species as a common pathway. Surv Ophthalmol 2023:S0039-6257(23)00144-3. [PMID: 37944599 DOI: 10.1016/j.survophthal.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Slowing down or stopping the natural process of cataractogenesis is certainly a challenge for those who today propose an option other than surgery. Addressing the same problem in different ways constitutes a new approach to solving what is today the number one cause of reversible blindness worldwide. The technological revolution, as well as the advances in the biological sciences, allows us to conceive mechanisms never thought of before to stop the process that, as a common pathway, constitutes opacification of the crystalline lens. A new dawn for cataracts is coming through molecular, newly-discovered mechanisms. Cataractogenesis and molecular pathways have reactive free oxygen species as a common pathway. Surgical removal is today's gold standard, but perhaps not for much longer.
Collapse
Affiliation(s)
- Arturo Iván Pérez Pacheco
- Department of Ophthalmology, The University of Medical Science, Ophthalmological General Teaching Center Hospital "Dr. Enrique Cabrera", Havana, Cuba.
| |
Collapse
|
3
|
Ketamine, benzoate, and sarcosine for treating depression. Neuropharmacology 2023; 223:109351. [PMID: 36423705 DOI: 10.1016/j.neuropharm.2022.109351] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Studies have demonstrated the beneficial therapeutic effects of sarcosine, benzoate, and ketamine (including esketamine and arketamine) on depression. These drugs mainly act by modulating N-methyl-d-aspartate glutamate receptors (NMDARs) and reducing inflammation in the brain. Although ketamine, benzoate, and sarcosine act differently as the antagonists or coagonists of NMDARs, they all have demonstrated efficacy in animal models or human trials. In vitro and in vivo studies have indicated that sarcosine, benzoate, and ketamine exert their anti-inflammatory effects by inhibiting microglial activity. This review summarizes and compares the efficacy of the possible therapeutic mechanisms of sarcosine, benzoate, ketamine, esketamine, and arketamine. These compounds act as both NMDAR modulators and anti-inflammatory drugs and thus can be effective in the treatment of depression.
Collapse
|
4
|
Hou Y, Xin M, Li Q, Wu X. Glycyrrhizin micelle as a genistein nanocarrier: Synergistically promoting corneal epithelial wound healing through blockage of the HMGB1 signaling pathway in diabetic mice. Exp Eye Res 2021; 204:108454. [PMID: 33497689 DOI: 10.1016/j.exer.2021.108454] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 01/13/2021] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to explore the feasibility of targeting the HMGB1 signaling pathway to treat diabetic keratopathy with a dipotassium glycyrrhizinate-based micelle ophthalmic solution encapsulating genistein (DG-Gen), and to evaluate whether these dipotassium glycyrrhizinate (DG) micelles could synergistically enhance the therapeutic effect of encapsulated genistein (Gen). An optimized DG-Gen ophthalmic solution was fabricated with a Gen/DG weight of ratio 1:15, and this formulation featured an encapsulation efficiency of 98.96 ± 0.82%, and an average particle size of 29.50 ± 2.05 nm. The DG-Gen ophthalmic solution was observed to have good in vivo ocular tolerance and excellent in vivo corneal permeation, and to remarkably improve in vitro antioxidant activity. Ocular topical application of the DG-Gen ophthalmic solution significantly prompted corneal re-epithelialization and nerve regeneration in diabetic mice, and this efficacy might be due to the inhibition of HMGB1 signaling through down-regulation of HMGB1 and its receptors RAGE and TLR4, as well as inflammatory factor interleukin (IL)-6 and IL-1β. In conclusion, these data showed that HMGB1 signaling is a potential regulation target for the treatment of diabetic keratopathy, and novel DG-micelle formulation encapsulating active agents such as Gen could synergistically cause blockage of HMGB1 signaling to prompt diabetic corneal and nerve wound healing.
Collapse
Affiliation(s)
- Yuzhen Hou
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meng Xin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Qiqi Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
5
|
Li X, Meng F, Li H, Hua X, Wu L, Yuan X. L‑carnitine alleviates oxidative stress‑related damage via MAPK signaling in human lens epithelial cells exposed to H2O2. Int J Mol Med 2019; 44:1515-1522. [PMID: 31364739 DOI: 10.3892/ijmm.2019.4283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/19/2019] [Indexed: 11/06/2022] Open
Abstract
L‑carnitine (LC) is well known for its antioxidative properties. The present study aimed to evaluate the effects of LC on human lens epithelial cells (HLECs) and to analyze its regulatory mechanism in cataractogenesis. HLE B‑3 cells were cultured with hydrogen peroxide (H2O2) and were pretreated with or without LC. The Cell Counting kit‑8 assay was used to determine cell viability. Reactive oxygen species (ROS) assay kit was used to measure the cellular ROS production induced by H2O2 and LC. In addition, reverse transcription‑quantitative PCR and western blot analysis were performed to detect the expression levels of oxidative damage markers and antioxidant enzymes. Notably, ROS overproduction was observed upon exposure to H2O2, whereas LC supplementation markedly decreased ROS levels through activation of the antioxidant enzymes forkhead box O1, peroxiredoxin 4 and catalase. Furthermore, LC suppressed the expression of apoptosis‑associated genes (caspase-3) and inflammation‑associated genes [interleukin (IL)1, IL6, IL8 and cyclooxygenase‑2]. Conversely, LC promoted proliferating cell nuclear antigen, cyclin‑dependent kinase (CDK)2 and CDK4 expression, which may increase proliferation of HLECs that were incubated with H2O2. In addition, epithelial‑mesenchymal transition occurred upon ROS accumulation, whereas the effects of H2O2 on AQP1 and vimentin expression were reversed upon LC supplementation. Notably, this study revealed that LC restored the oxidant/antioxidant balance and protected against cell damage through the mitogen‑activated protein kinase signaling pathway. In conclusion, LC may serve a protective role in curbing oxidative damage and therefore may be considered a potential therapeutic agent for the treatment of cataracts.
Collapse
Affiliation(s)
- Xiaoxia Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, P.R. China
| | - Fanlan Meng
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, P.R. China
| | - Hua Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, P.R. China
| | - Xia Hua
- Department of Ophthalmology, Tianjin Orbit Research Institute, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Li'an Wu
- Xi'an No. 4 Hospital, Shaanxi Ophthalmic Medical Center, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, P.R. China
| |
Collapse
|