1
|
Dai L, Zeng Q, Zhang T, Zhang Y, Shi Y, Li Y, Xu K, Huang J, Wang Z, Zhou Q, Yan R. Structural basis for the substrate recognition and transport mechanism of the human y +LAT1-4F2hc transporter complex. SCIENCE ADVANCES 2025; 11:eadq0558. [PMID: 40106545 PMCID: PMC11922002 DOI: 10.1126/sciadv.adq0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
Heteromeric amino acid transporters (HATs), including y+LAT1-4F2hc complex, are responsible for transporting amino acids across membranes, and mutations in y+LAT1 cause lysinuric protein intolerance (LPI), a hereditary disorder characterized by defective cationic amino acid transport. The relationship between LPI and specific mutations in y+LAT1 has yet to be fully understood. In this study, we characterized the function of y+LAT1-4F2hc complex in mammalian cells and determined the cryo-EM structures of the human y+LAT1-4F2hc complex in two distinct conformations: the apo state in an inward-open conformation and the native substrate-bound state in an outward-open conformation. Structural analysis suggests that Asp243 in y+LAT1 plays a crucial role in coordination with sodium ion and substrate selectivity. Molecular dynamic (MD) simulations further revealed the different transport mechanism of cationic amino acids and neutral amino acids. These results provide important insights into the mechanisms of the substrate binding and working cycle of HATs.
Collapse
Affiliation(s)
- Lu Dai
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qian Zeng
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ting Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yuanyuan Zhang
- Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Yi Shi
- Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Yaning Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kangtai Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jing Huang
- Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Zilong Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qiang Zhou
- Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Renhong Yan
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Li Z, Bhowmik S, Sagresti L, Brancato G, Smith M, Benson DE, Li P, Merz KM. Simulating Metal-Imidazole Complexes. J Chem Theory Comput 2024; 20:6706-6716. [PMID: 39081207 PMCID: PMC11325557 DOI: 10.1021/acs.jctc.4c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
One commonly observed binding motif in metalloproteins involves the interaction between a metal ion and histidine's imidazole side chains. Although previous imidazole-M(II) parameters established the flexibility and reliability of the 12-6-4 Lennard-Jones (LJ)-type nonbonded model by simply tuning the ligating atom's polarizability, they have not been applied to multiple-imidazole complexes. To fill this gap, we systematically simulate multiple-imidazole complexes (ranging from one to six) for five metal ions (Co(II), Cu(II), Mn(II), Ni(II), and Zn(II)) which commonly appear in metalloproteins. Using extensive (40 ns per PMF window) sampling to assemble free energy association profiles (using OPC water and standard HID imidazole charge models from AMBER) and comparing the equilibrium distances to DFT calculations, a new set of parameters was developed to focus on energetic and geometric features of multiple-imidazole complexes. The obtained free energy profiles agree with the experimental binding free energy and DFT calculated distances. To validate our model, we show that we can close the thermodynamic cycle for metal-imidazole complexes with up to six imidazole molecules in the first solvation shell. Given the success in closing the thermodynamic cycles, we then used the same extended sampling method for six other metal ions (Ag(I), Ca(II), Cd(II), Cu(I), Fe(II), and Mg(II)) to obtain new parameters. Since these new parameters can reproduce the one-imidazole geometry and energy accurately, we hypothesize that they will reasonably predict the binding free energy of higher-level coordination numbers. Hence, we did not extend the analysis of these ions up to six imidazole complexes. Overall, the results shed light on metal-protein interactions by emphasizing the importance of ligand-ligand interaction and metal-π-stacking within metalloproteins.
Collapse
Affiliation(s)
- Zhen Li
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Subhamoy Bhowmik
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Luca Sagresti
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- CSGI, Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Giuseppe Brancato
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
- CSGI, Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Madelyn Smith
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - David E Benson
- Department of Chemistry & Biochemistry, Calvin University, Grand Rapids, Michigan 49546, United States
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Kenneth M Merz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Li Z, Song LF, Sharma G, Koca Fındık B, Merz KM. Accurate Metal-Imidazole Interactions. J Chem Theory Comput 2022; 19:619-625. [PMID: 36584400 DOI: 10.1021/acs.jctc.2c01081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modeling the interaction between a metal ion and small molecules can provide pivotal information to bridge and close the gap between two types of simulations: metal ions in water and metal ions in metalloproteins. As previously established, the 12-6-4 Lennard-Jones (LJ)-type nonbonded model, because of its ability to account for the induced dipole effect, has been highly successful in simulating metal ion systems. Using the potential of mean force (PMF) method, the polarizability of the metal-chelating nitrogen from two types of imidazole molecules, delta nitrogen protonated (HID) and epsilon nitrogen protonated (HIE), has been parametrized against experiment for 11 metals (Ag(I), Ca(II), Cd(II), Co(II), Cu(I), Cu(II), Fe(II), Mg(II), Mn(II), Ni(II), and Zn(II)) in conjunction with three commonly used water models (TIP3P, SPC/E, and OPC). We show that the standard 12-6 and unmodified 12-6-4 models are not able to accurately model these interactions and, indeed, predict that the complex should be unstable. The resultant parameters further establish the flexibility and the reliability of the 12-6-4 LJ-type nonbonded model, which can correctly describe three-component interactions between a metal, ligand, and solvent by simply tuning the polarizability of the chelating atom. Also, the transferability of this model was tested, showing the capability of describing metal-ligand interactions in various environments.
Collapse
Affiliation(s)
- Zhen Li
- Department of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| | - Lin Frank Song
- Department of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| | - Gaurav Sharma
- Department of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| | - Basak Koca Fındık
- Department of Chemistry, Boğaziçi University, Bebek, 34342Istanbul, Turkey
| | - Kenneth M Merz
- Department of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan48824, United States
| |
Collapse
|
4
|
Zhao S, Schaub AJ, Tsai SC, Luo R. Development of a Pantetheine Force Field Library for Molecular Modeling. J Chem Inf Model 2021; 61:856-868. [PMID: 33534558 PMCID: PMC8266206 DOI: 10.1021/acs.jcim.0c01384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pantetheine is ubiquitous in nature in various forms of pantetheine-containing ligands (PCLs), including coenzyme A and phosphopantetheine. Lack of scalable force field libraries for PCLs has hampered the computational studies of biological macromolecules containing PCLs. We describe here the development of the first generation Pantetheine Force Field (PFF) library that is compatible with Amber force fields; parameterized using Gasteiger, AM1-BCC, or RESP charging methods combined with gaff2 and ff14SB parameter sets. In addition, a "plug-and-play" strategy was employed to enable the systematic charging of computationally expensive molecules sharing common substructural motifs. The validation studies performed on the PFF library showed promising performance where molecular dynamics (MD) simulations results were compared with experimental data of three representative systems. The PFF library represents the first force field library capable of modeling systems containing PCLs in silico and will aid in various applications including protein engineering and drug discovery.
Collapse
Affiliation(s)
- Shiji Zhao
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Andrew J Schaub
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Shiou-Chuan Tsai
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
5
|
Orabi EA, English AM. Modeling Shows that Rotation about the Peroxide O-O Bond Assists Protein and Lipid Functional Groups in Discriminating between H 2O 2 and H 2O. J Phys Chem B 2020; 125:137-147. [PMID: 33356279 DOI: 10.1021/acs.jpcb.0c10326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Long associated with cell death, hydrogen peroxide (H2O2) is now known to perform many physiological roles. Unraveling its biological mechanisms of action requires atomic-level knowledge of its association with proteins and lipids, which we address here. High-level [MP2(full)/6-311++G(3df,3pd)] ab initio calculations reveal skew rotamers as the lowest-energy states of isolated H2O2 (ϕHOOH ∼ 112°) with minimum and maximum electrostatic potentials (kcal/mol) of -24.8 (Vs,min) and 36.5 (Vs,max), respectively. Transition-state, nonpolar trans rotamers (ϕHOOH ∼ 180°) at 1.2 kcal/mol higher in energy are poorer H-bond acceptors (Vs,min = -16.6) than the skew rotamers, while highly polar cis rotamers (ϕHOOH ∼ 0°) at 7.8 kcal/mol are much better H-bond donors (Vs,max = 52.7). Modeling H2O2 association with neutral and charged analogs of protein residues and lipid groups (e.g., ester, phosphate, choline) reveals that skew rotamers (ϕHOOH = 84-122°) are favored in the neutral and cationic complexes, which display gas-phase interaction energies (ECP, kcal/mol) of -1.5 to -18. The neutral and cationic complexes of H2O exhibit a similar range of stabilities (ECP ∼ -1 to -18). However, considerably higher energies (ECP ∼ -14 to -36) are found for the H2O2 complexes of the anionic ligands, which are stabilized by charge-assisted H-bond donation from cis and distorted cis rotamers (ϕHOOH = 0-60°). H2O is a much poorer H-bond donor (Vs,max = 33.4) than cis-H2O2, so its anionic complexes are significantly weaker (ECP ∼ -11 to -20). Thus, by dictating the rotamer preference of H2O2, functional groups in biomolecules can discriminate between H2O2 and H2O. Finally, exploiting the present ab initio data, we calibrated and validated our published molecular mechanics model for H2O2 (Orabi, E. A.; English, A. M. J. Chem. Theory Comput. 2018, 14, 2808-2821) to provide an important tool for simulating H2O2 in biology.
Collapse
Affiliation(s)
- Esam A Orabi
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt.,Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - Ann M English
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.,Center for Research in Molecular Modeling (CERMM) and Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
6
|
Orabi EA, Faraldo-Gómez JD. New Molecular-Mechanics Model for Simulations of Hydrogen Fluoride in Chemistry and Biology. J Chem Theory Comput 2020; 16:5105-5126. [PMID: 32615034 DOI: 10.1021/acs.jctc.0c00247] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen fluoride (HF) is the most polar diatomic molecule and one of the simplest molecules capable of hydrogen-bonding. HF deviates from ideality both in the gas phase and in solution and is thus of great interest from a fundamental standpoint. Pure and aqueous HF solutions are broadly used in chemical and industrial processes, despite their high toxicity. HF is a stable species also in some biological conditions, because it does not readily dissociate in water unlike other hydrogen halides; yet, little is known about how HF interacts with biomolecules. Here, we set out to develop a molecular-mechanics model to enable computer simulations of HF in chemical and biological applications. This model is based on a comprehensive high-level ab initio quantum chemical investigation of the structure and energetics of the HF monomer and dimer; (HF)n clusters, for n = 3-7; various clusters of HF and H2O; and complexes of HF with analogs of all 20 amino acids and of several commonly occurring lipids, both neutral and ionized. This systematic analysis explains the unique properties of this molecule: for example, that interacting HF molecules favor nonlinear geometries despite being diatomic and that HF is a strong H-bond donor but a poor acceptor. The ab initio data also enables us to calibrate a three-site molecular-mechanics model, with which we investigate the structure and thermodynamic properties of gaseous, liquid, and supercritical HF in a wide range of temperatures and pressures; the solvation structure of HF in water and of H2O in liquid HF; and the free diffusion of HF across a lipid bilayer, a key process underlying the high cytotoxicity of HF. Despite its inherent simplifications, the model presented significantly improves upon previous efforts to capture the properties of pure and aqueous HF fluids by molecular-mechanics methods and to our knowledge constitutes the first parameter set calibrated for biomolecular simulations.
Collapse
Affiliation(s)
- Esam A Orabi
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, United States
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, United States
| |
Collapse
|
7
|
Li Z, Song LF, Li P, Merz KM. Systematic Parametrization of Divalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. J Chem Theory Comput 2020; 16:4429-4442. [PMID: 32510956 DOI: 10.1021/acs.jctc.0c00194] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Divalent metal ions play important roles in biological and materials systems. Molecular dynamics simulation is an efficient tool to investigate these systems at the microscopic level. Recently, four new water models (OPC3, OPC, TIP3P-FB, and TIP4P-FB) have been developed and better represent the physical properties of water than previous models. Metal ion parameters are dependent on the water model employed, making it necessary to develop metal ion parameters for select new water models. In the present work, we performed parameter scanning for the 12-6 Lennard-Jones nonbonded model of divalent metal ions in conjunction with the four new water models as well as four previous water models (TIP3P, SPC/E, TIP4P, and TIP4P-Ew). We found that these new three-point and four-point water models provide comparable or significantly improved performance for the simulation of divalent metal ions when compared to previous water models in the same category. Among all eight water models, the OPC3 water model yields the best performance for the simulation of divalent metal ions in the aqueous phase when using the 12-6 model. On the basis of the scanning results, we independently parametrized the 12-6 model for 24 divalent metal ions with each of the four new water models. As noted previously, the 12-6 model still fails to simultaneously reproduce the experimental hydration free energy (HFE) and ion-oxygen distance (IOD) values even with these new water models. To solve this problem, we parametrized the 12-6-4 model for the 16 divalent metal ions for which we have both experimental HFE and IOD values for each of the four new water models. The final parameters are able to reproduce both the experimental HFE and IOD values accurately. To validate the transferability of our parameters, we carried out benchmark calculations to predict the energies and geometries of ion-water clusters as well as the ion diffusivity coefficient of Mg2+. By comparison to quantum chemical calculations and experimental data, these results show that our parameters are well designed and have excellent transferability. The metal ion parameters for the 12-6 and 12-6-4 models reported herein can be employed in simulations of various biological and materials systems when using the OPC3, OPC, TIP3P-FB, or TIP4P-FB water model.
Collapse
Affiliation(s)
- Zhen Li
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lin Frank Song
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Pengfei Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Kenneth M Merz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Biochemistry and Molecular Biology, Michigan State University,East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Zhao G, Zhu H. Cation-π Interactions in Graphene-Containing Systems for Water Treatment and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905756. [PMID: 32253804 DOI: 10.1002/adma.201905756] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/30/2020] [Indexed: 06/11/2023]
Abstract
Cation-π interactions are common in nature, especially in organisms. Their profound influences in chemistry, physics, and biology have been continuously investigated since they were discovered in 1981. However, the importance of cation-π interactions in materials science, regarding carbonaceous nanomaterials, has just been realized. The interplay between cations and delocalized polarizable π electrons of graphene would bring about significant changes to the intrinsic characteristics of graphene and greatly affect the device performance based on graphene and its derivatives. Here, the cation-π interactions in graphene containing systems for water treatment applications (e.g., separation membranes, adsorbents) are highlighted. The cross-linking effects caused by cation-π interactions contribute to membrane stability and selectivity and enhanced adsorption. Their roles in dominating the performance of graphene-based structures for other specific applications are also discussed. Relevant theoretical modeling and calculations are summarized to offer an in-depth understanding of the underlying mechanisms which can help in designing more functional materials and structures. Perspectives on the potential directions that deserve effort are also presented.
Collapse
Affiliation(s)
- Guoke Zhao
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongwei Zhu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Orabi EA, Davis RL, Lamoureux G. Drude polarizable force field for cation–π interactions of alkali and quaternary ammonium ions with aromatic amino acid side chains. J Comput Chem 2019; 41:472-481. [DOI: 10.1002/jcc.26084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/14/2019] [Accepted: 09/16/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Esam A. Orabi
- Department of ChemistryFaculty of Science, Assiut University Assiut 71516 Egypt
- Department of ChemistryUniversity of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Rebecca L. Davis
- Department of ChemistryUniversity of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Guillaume Lamoureux
- Department of Chemistry and Center for Computational and Integrative Biology (CCIB)Rutgers University Camden New Jersey 08102
- Centre for Research in Molecular Modeling (CERMM), Concordia University Montréal Québec H4B 1R6 Canada
| |
Collapse
|
10
|
Bernsteiner H, Zangerl-Plessl EM, Chen X, Stary-Weinzinger A. Conduction through a narrow inward-rectifier K + channel pore. J Gen Physiol 2019; 151:1231-1246. [PMID: 31511304 PMCID: PMC6785732 DOI: 10.1085/jgp.201912359] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
G-protein–gated inwardly rectifying potassium channels are important mediators of inhibitory neurotransmission. Based on microsecond-scale molecular dynamics simulations, Bernsteiner et al. propose novel gating details that may enable K+ flux via a direct knock-on mechanism. Inwardly rectifying potassium (Kir) channels play a key role in controlling membrane potentials in excitable and unexcitable cells, thereby regulating a plethora of physiological processes. G-protein–gated Kir channels control heart rate and neuronal excitability via small hyperpolarizing outward K+ currents near the resting membrane potential. Despite recent breakthroughs in x-ray crystallography and cryo-EM, the gating and conduction mechanisms of these channels are poorly understood. MD simulations have provided unprecedented details concerning the gating and conduction mechanisms of voltage-gated K+ and Na+ channels. Here, we use multi-microsecond–timescale MD simulations based on the crystal structures of GIRK2 (Kir3.2) bound to phosphatidylinositol-4,5-bisphosphate to provide detailed insights into the channel’s gating dynamics, including insights into the behavior of the G-loop gate. The simulations also elucidate the elementary steps that underlie the movement of K+ ions through an inward-rectifier K+ channel under an applied electric field. Our simulations suggest that K+ permeation might occur via direct knock-on, similar to the mechanism recently shown for Kv channels.
Collapse
Affiliation(s)
- Harald Bernsteiner
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - Xingyu Chen
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | |
Collapse
|
11
|
|
12
|
Sala D, Musiani F, Rosato A. Application of Molecular Dynamics to the Investigation of Metalloproteins Involved in Metal Homeostasis. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Davide Sala
- Magnetic Resonance Center (CERM); University of Florence; Via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry; Department of Pharmacy and Biotechnology; University of Bologna; Viale Giuseppe Fanin 40, I 40127 Bologna Italy
| | - Antonio Rosato
- Magnetic Resonance Center (CERM); University of Florence; Via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine; Via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
13
|
Orabi EA, Lamoureux G. Cation-π Interactions between Quaternary Ammonium Ions and Amino Acid Aromatic Groups in Aqueous Solution. J Phys Chem B 2018; 122:2251-2260. [PMID: 29397727 DOI: 10.1021/acs.jpcb.7b11983] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cation-π interactions play important roles in the stabilization of protein structures and protein-ligand complexes. They contribute to the binding of quaternary ammonium ligands (mainly RNH3+ and RN(CH3)3+) to various protein receptors and are likely involved in the blockage of potassium channels by tetramethylammonium (TMA+) and tetraethylammonium (TEA+). Polarizable molecular models are calibrated for NH4+, TMA+, and TEA+ interacting with benzene, toluene, 4-methylphenol, and 3-methylindole (representing aromatic amino acid side chains) based on the ab initio MP2(full)/6-311++G(d,p) properties of the complexes. Whereas the gas-phase affinity of the ions with a given aromatic follows the trend NH4+ > TMA+ > TEA+, molecular dynamics simulations using the polarizable models show a reverse trend in water, likely due to a contribution from the hydrophobic effect. This reversed trend follows the solubility of aromatic hydrocarbons in quaternary ammonium salt solutions, which suggests a role for cation-π interactions in the salting-in of aromatic compounds in solution. Simulations in water show that the complexes possess binding free energies ranging from -1.3 to -3.3 kcal/mol (compared to gas-phase binding energies between -8.5 and -25.0 kcal/mol). Interestingly, whereas the most stable complexes involve TEA+ (the largest ion), the most stable solvent-separated complexes involve TMA+ (the intermediate-size ion).
Collapse
Affiliation(s)
- Esam A Orabi
- Department of Chemistry and Biochemistry and Centre for Research in Molecular Modeling (CERMM), Concordia University , 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - Guillaume Lamoureux
- Department of Chemistry and Biochemistry and Centre for Research in Molecular Modeling (CERMM), Concordia University , 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
14
|
Pašalić H, Aquino AJA, Tunega D, Haberhauer G, Gerzabek MH, Lischka H. Cation-π interactions in competition with cation microhydration: a theoretical study of alkali metal cation-pyrene complexes. J Mol Model 2017; 23:131. [PMID: 28337678 PMCID: PMC5364259 DOI: 10.1007/s00894-017-3302-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/27/2017] [Indexed: 11/19/2022]
Abstract
Cation–π interactions were systematically investigated for the adsorption of H+ and alkali metal cations M+ to pyrene by means of Møller–Plesset perturbation theory (MP2) and density functional theory (DFT). The main aims were to determine the preferred adsorption sites and how the microhydration shell influences the adsorption process. The preferred adsorption sites were characterized in terms of structural parameters and energetic stability. Stability analysis of the M+–pyrene complexes revealed that the binding strength and the barrier to transitions between neighboring sites generally decreased with increasing cation size from Li+ to Cs+. Such transitions were practically barrierless (<<1 kcal/mol) for the large Rb+ and Cs+ ions. Further, the influence of the first hydration shell on the adsorption behavior was investigated for Li+ and K+ as representatives of small and large (alkali metal) cations, respectively. While the isolated complexes possessed only one minimum, two minima—corresponding to an inner and an outer complex—were observed for microhydrated complexes. The small Li+ ion formed a stable hydration shell and preferentially interacted with water rather than pyrene. In contrast, K+ favored cation–π over cation–water interactions. It was found that the mechanism for complex formation depends on the balance between cation–π interactions, cation–water complexation, and the hydrogen bonding of water to the π-system.
Collapse
Affiliation(s)
- Hasan Pašalić
- Institute for Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria
| | - Adelia J A Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.,Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, 1190, Vienna, Austria
| | - Daniel Tunega
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, 1190, Vienna, Austria.
| | - Georg Haberhauer
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, 1190, Vienna, Austria
| | - Martin H Gerzabek
- Institute for Soil Research, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Strasse 82, 1190, Vienna, Austria
| | - Hans Lischka
- Institute for Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria. .,School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
15
|
Abstract
Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.
Collapse
Affiliation(s)
| | - Kenneth M. Merz
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute of Cyber-Enabled Research, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
Yildiz I. A computational insight into the interaction of methylated lysines with aromatic amino acid cages. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ibrahim Yildiz
- Applied Mathematics and Sciences; Khalifa University; Abu Dhabi UAE
| |
Collapse
|
17
|
Orabi EA, English AM. Sulfur-Aromatic Interactions: Modeling Cysteine and Methionine Binding to Tyrosinate and Histidinium Ions to Assess Their Influence on Protein Electron Transfer. Isr J Chem 2016. [DOI: 10.1002/ijch.201600047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Esam A. Orabi
- Department of Chemistry and Biochemistry; Concordia University; 7141 Sherbrooke Street West Montréal Québec H4B 1R6 Canada
- Center for Research in Molecular Modeling (CERMM)Quebec; Network for Research on Protein Function, Engineering, and Applications (PROTEO)
- On leave from Department of Chemistry, Faculty of Science; Assiut University; Assiut 71516 Egypt
| | - Ann M. English
- Department of Chemistry and Biochemistry; Concordia University; 7141 Sherbrooke Street West Montréal Québec H4B 1R6 Canada
- Center for Research in Molecular Modeling (CERMM)Quebec; Network for Research on Protein Function, Engineering, and Applications (PROTEO)
| |
Collapse
|
18
|
Orabi EA, Lamoureux G. Simulation of Liquid and Supercritical Hydrogen Sulfide and of Alkali Ions in the Pure and Aqueous Liquid. J Chem Theory Comput 2014; 10:3221-35. [DOI: 10.1021/ct5002335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Esam A. Orabi
- Department of Chemistry and Biochemistry
and Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - Guillaume Lamoureux
- Department of Chemistry and Biochemistry
and Centre for Research in Molecular Modeling (CERMM), Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
19
|
Pezeshki S, Lin H. Recent developments in QM/MM methods towards open-boundary multi-scale simulations. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.911870] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Boulanger E, Thiel W. Toward QM/MM Simulation of Enzymatic Reactions with the Drude Oscillator Polarizable Force Field. J Chem Theory Comput 2014; 10:1795-809. [DOI: 10.1021/ct401095k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eliot Boulanger
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz
1, 45470 Mülheim
an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz
1, 45470 Mülheim
an der Ruhr, Germany
| |
Collapse
|
21
|
Orabi EA, Lamoureux G. Molecular Dynamics Investigation of Alkali Metal Ions in Liquid and Aqueous Ammonia. J Chem Theory Comput 2013; 9:2324-38. [DOI: 10.1021/ct4001069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Esam A. Orabi
- Department of Chemistry
and Biochemistry and Centre
for Research in Molecular Modeling (CERMM), Concordia University,
7141 Sherbrooke Street West, Montréal, Québec H4B 1R6,
Canada
| | - Guillaume Lamoureux
- Department of Chemistry
and Biochemistry and Centre
for Research in Molecular Modeling (CERMM), Concordia University,
7141 Sherbrooke Street West, Montréal, Québec H4B 1R6,
Canada
| |
Collapse
|
22
|
Orabi EA, Lamoureux G. Polarizable Interaction Model for Liquid, Supercritical, and Aqueous Ammonia. J Chem Theory Comput 2013; 9:2035-51. [DOI: 10.1021/ct301123j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Esam A. Orabi
- Department of Chemistry
and Biochemistry and Centre
for Research in Molecular Modeling (CERMM), Concordia University,
7141 Sherbrooke Street West, Montréal, Québec H4B 1R6,
Canada
| | - Guillaume Lamoureux
- Department of Chemistry
and Biochemistry and Centre
for Research in Molecular Modeling (CERMM), Concordia University,
7141 Sherbrooke Street West, Montréal, Québec H4B 1R6,
Canada
| |
Collapse
|
23
|
Mahadevi AS, Sastry GN. Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 2012; 113:2100-38. [PMID: 23145968 DOI: 10.1021/cr300222d] [Citation(s) in RCA: 780] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- A Subha Mahadevi
- Molecular Modeling Group, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad 500 607, Andhra Pradesh, India
| | | |
Collapse
|