1
|
Shen H, Fu J, Liu J, Zou T, Wang K, Zhang X, Wan J. Ginsenoside Rk2 alleviates hepatic ischemia/reperfusion injury by enhancing AKT membrane translocation and activation. MedComm (Beijing) 2025; 6:e70047. [PMID: 39811799 PMCID: PMC11731106 DOI: 10.1002/mco2.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/20/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) poses a significant threat to clinical outcomes and graft survival during hemorrhagic shock, hepatic resection, and liver transplantation. Current pharmacological interventions for hepatic IRI are inadequate. In this study, we identified ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin, as a promising agent against hepatic IRI through high-throughput screening. The pharmacological effects and molecular mechanisms of Rk2 on hepatic IRI were further evaluated and elucidated in vitro and in vivo. Rk2 significantly reduced inflammation and apoptosis caused by oxygen-glucose deprivation and reperfusion in hepatocytes and dose dependently protected against hepatic I/R-induced liver injury in mice. Integrated approaches, including network pharmacology, molecular docking, transcriptome analysis, and isothermal titration calorimetry, along with experimental validation, indicated that Rk2 protects against hepatic IRI by targeting and activating the AKT (RAC serine/threonine protein kinase) signaling pathway. Pharmacological inhibition of AKT pathway or knockdown of AKT1 effectively diminished protective effects of Rk2. Rk2 directly binds to AKT1, facilitating its translocation from the cytoplasm to plasma membrane. This process markedly enhanced AKT interaction with PDPK1, promoting the activation of AKT1 and its downstream signaling. Our findings demonstrate that Rk2 protects against hepatic IRI by activating AKT signaling through direct binding to AKT1 and facilitating its membrane translocation.
Collapse
Affiliation(s)
- Hong Shen
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| | - Jiajun Fu
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| | - Toujun Zou
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Kun Wang
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
| | - Xiao‐Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesGannan Innovation and Translational Medicine Research InstituteGannan Medical UniversityGanzhouChina
- Basic Medical SchoolWuhan UniversityWuhanChina
| | - Jian‐Bo Wan
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao SARChina
| |
Collapse
|
2
|
Peng Z, Edwards H, Mustfa W, El Safadi M, Tehreem S, Gaafar ARZ, Bourhia M, Shah TA, Hira H. Ameliorative role of catechin to combat against lindane instigated liver toxicity via modulating PI3K/PIP3/Akt, Nrf-2/Keap-1, NF-κB pathway and histological profile. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106063. [PMID: 39277379 DOI: 10.1016/j.pestbp.2024.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/17/2024]
Abstract
Lindane (LDN) is a well-known herbicidal drug that exerts deleterious impacts on vital body organs including the liver. Catechin (CTN) is a plant-based flavonoid that demonstrates various pharmacological abilities. This trial was executed to evaluate the ameliorative efficacy of CTN to combat LDN instigated hepatotoxicity in male albino rats (Rattus norvegicus). Thirty-two rats were categorized into four groups including control, LDN (30 mg/kg), LDN (30 mg/kg) + CTN (40 mg/kg) and CTN (40 mg/kg) alone treated group. It was observed that LDN dysregulated the expressions of PI3K/PIP3/Akt and Nrf-2/Keap-1 pathway. Moreover, the activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), heme‑oxygenase-1 (HO-1) and glutathione reductase (GSR) were subsided after LDN intoxication. Besides, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), ALT (Alanine aminotransferase), AST (Aspartate transaminase), Gamma-glutamyl transferase (GGT) and ALP (Alkaline phosphatase) were increased whereas reduced the levels of albumin and total proteins in response to LDN exposure. Additionally, LDN administration escalated the levels of Interleukin-6 (IL-6), Nuclear factor kappa-B (NF-κB), Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and the activity of cyclooxygenase-2 (COX-2). Furthermore, the gene expressions of Bcl-2-associated X protein (Bax) and Cysteinyl aspartate-acid proteases-3 (Caspase-3) were enhanced whereas the expression of B-cell lymphoma-2 (Bcl-2) was lowered following the LDN treatment. LDN instigated various histological impairments in hepatic tissues. Nonetheless, concurrent administration of CTN remarkably ameliorated liver impairments via regulating aforementioned disruptions owing to its antioxidant, anti-apoptotic and histo-protective potentials.
Collapse
Affiliation(s)
- Zhongtian Peng
- Department of Infectious Diseases, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 420000, China
| | - Henry Edwards
- Department of Biology, The University of Melbourne, Australia.
| | - Warda Mustfa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Mahmoud El Safadi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Shahaba Tehreem
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hasooba Hira
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Ali FF, Mohammed MM, Hussein Y, Ibrahim MFG. Targeting PI3K/p-Akt/eNOS, Nrf2/HO-1, and NF-κB/p53 signaling pathways by angiotensin 1-7 protects against liver injury induced by ischemia-reperfusion in rats. Cell Biochem Funct 2024; 42:e3938. [PMID: 38269514 DOI: 10.1002/cbf.3938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
The liver is an important organ, and hepatic ischemia-reperfusion (IR) injury is a frequent pathophysiological process that can cause significant morbidity and mortality. Thus, our study aimed to investigate the effect of targeting PI3K/p-Akt/eNOS (phosphoinositide 3-kinase/phospho-protein kinase B/endothelial nitric oxide synthase), Nrf2/HO-1 (nuclear factor-erythroid 2-related factor-2/heme oxygenase-1), and NF-κB/p53 (nuclear factor-κB/tumor protein 53) signaling pathways by using angiotensin (1-7) [ang-(1-7)] against hepatic injury induced by IR. Thirty-two male rats were included in sham group, ang-(1-7)-treated group, hepatic IR group, and hepatic IR group treated with ang-(1-7). The levels of hepatic ang-(1-7), angiotensin II (Ang II), angiotensin-converting enzyme 2 (ACE2), HO-1, malondialdehyde (MDA), PI3K, and p-Akt were assessed. The expressions of eNOS and B-cell leukemia/lymphoma-2 (BCL-2) in the liver were determined. Histological assessment and immunohistochemical expression of NF-κB, p53, and Nrf2 were carried out. The levels of reduced glutathione (GSH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in serum were estimated. Results showed that administration of ang-(1-7) to hepatic IR rats led to significant amelioration of hepatic damage through a histological evaluation that was associated with significant upregulation of the expressions of PI3K/p-Akt/eNOS and Nrf2/HO-1 with downregulation of NF-κB/p53 signaling pathways. In conclusion, PI3K/p-Akt/eNOS and Nrf2/HO-1 signaling pathways are involved in the protective effects of ang-(1-7) against hepatic damage induced by IR. Therefore, ang-(1-7) can be used to prevent hepatic IR, which occurs in certain conditions such as liver transplantation, hemorrhagic shock, and severe infection.
Collapse
Affiliation(s)
- Fatma Farrag Ali
- Medical Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt
- Biochemistry and Physiology Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | | | - Youssef Hussein
- Anatomy, Histology and Embryology Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
4
|
Sayed AM, Gohar OM, Abd-Alhameed EK, Hassanein EHM, Ali FEM. The importance of natural chalcones in ischemic organ damage: Comprehensive and bioinformatic analysis review. J Food Biochem 2022; 46:e14320. [PMID: 35857486 DOI: 10.1111/jfbc.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Over the last few decades, extensive research has been conducted, yielding a detailed account of thousands of newly discovered compounds of natural origin and their biological activities, all of which have the potential to be used for a wide range of therapeutic purposes. There are multiple research papers denoting the central objective of chalcones, which have been shown to have therapeutic potential against various forms of ischemia. The various aspects of chalcones are discussed in this review regarding molecular mechanisms involved in the promising anti-ischemic potential of these chalcones. The main mechanisms involved in these protective effects are Nrf2/Akt activation and NF-κB/TLR4 suppression. Furthermore, in-silico studies were carried out to discover the probable binding of these chalcones to Keap-1 (an inhibitor of Nrf2), Akt, NF-κB, and TLR4 protein molecules. Besides, network pharmacology analysis was conducted to predict the interacting partners of these signals. The obtained results indicated that Nrf2, Akt, NF-κB, and TLR4 are involved in the beneficial anti-ischemic actions of chalcones. Conclusively, the present findings show that chalcones as anti-ischemic agents have a valid rationale. The discussed studies will provide a comprehensive viewpoint on chalcones and can help to optimize their effects in different ischemia. PRACTICAL APPLICATIONS: Ischemic organ damage is an unavoidable pathological condition with a high worldwide incidence. According to the current research progress, natural chalcones have been proved to treat and/or prevent various types of ischemic organ damage by alleviating oxidative stress, inflammation, and apoptosis by different molecular mechanisms. This article displays the comprehensive research progress and the molecular basis of ischemic organ damage pathophysiology and introduces natural chalcones' mechanism in the ischemic organ condition.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Osama M Gohar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
5
|
Sv I, Ru O, Kn K, Ib A, Demorzhi MS, Ta G, Sb S. Low molecular weight NGF mimetic GK-2 normalizes the parameters of glucose and lipid metabolism and exhibits a hepatoprotective effect on a prediabetes model in obese Wistar rats. Clin Exp Pharmacol Physiol 2022; 49:1116-1125. [PMID: 35748804 DOI: 10.1111/1440-1681.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/13/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Signs of metabolic syndrome and prediabetes preceding type 2 diabetes are modelled in an experiment using a high-fat diet (HFD). The aim of this work was to study the effect of a low molecular weight systemically active nerve growth factor mimetic, compound GK-2 (hexamethylenediamide bis(N-monosuccinyl-L-glutamyl-L-lysine)), on indicators of abdominal obesity, basal blood glucose level, glucose tolerance, cholesterol and triglyceride blood levels, as well as the morphological structure of the liver in male Wistar rats fed a HFD. Rats were divided into three groups: one of them received standard food (control) and two others were fed a HFD containing 45% fat, 35% carbohydrates and 20% protein, with a total caloric value of 516 kcal/100 g, over 12 weeks. Starting from the 9th week, for the next 4 weeks, one of the HFD groups was treated orally with saline whilst the other group was treated orally with GK-2 at a dose of 5 mg/kg. GK-2 was found to reduce the basal glycemia level and improve glucose tolerance, as well as to reduce the blood level of cholesterol by 30% and that of triglycerides by 28% in comparison with the saline-treated HFD animals. GK-2 reduced the degree of abdominal obesity to the level of the healthy animals and eliminated morphological abnormalities in the liver caused by the HFD. The results of the study determine the feasibility of further GK-2 research as a potential agent for prediabetes treatment.
Collapse
Affiliation(s)
- Ivanov Sv
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - Ostrovskaya Ru
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - Kolyasnikova Kn
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - Alchinova Ib
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - M S Demorzhi
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Gudasheva Ta
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| | - Seredenin Sb
- V.V. Zakusov Research Institute of Pharmacology, Moscow, Russia
| |
Collapse
|
6
|
DUSP12 protects against hepatic ischemia-reperfusion injury dependent on ASK1-JNK/p38 pathway in vitro and in vivo. Clin Sci (Lond) 2021; 134:2279-2294. [PMID: 32803262 DOI: 10.1042/cs20191272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/02/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Hepatic ischemia-reperfusion (I/R) injury is an important risk factor resulting in liver failure during liver surgery. However, there is still lack of effective therapeutic methods to treat hepatic I/R injury. DUSP12 is a member of the dual specific phosphatase (DUSP) family. Some DUSPs have been identified as being involved in the regulation of hepatic I/R injury. However, the role of DUSP12 during hepatic I/R injury is still unclear. In the present study, we observed a significant decrease in DUSP12 expression in a hepatic I/R injury mouse model in vivo and in hypoxia/reoxygenation (H/R) model in vitro. Using hepatocyte-specific DUSP12 knockout mice and DUSP12 transgenic mice, we demonstrated that DUSP12 apparently relieved I/R-induced liver injury. Moreover, DUSP12 inhibited hepatic inflammatory responses and alleviated apoptosis both in vitro and in vivo. Furthermore, we demonstrated that JNK and p38 activity, but not ERK1/2, was increased in the DUSP12-deficient mice and decreased in the DUSP12 transgenic mice under I/R condition. ASK1 was required for DUSP12 function in hepatic I/R injury and inhibition of ASK1 prevented inflammation and apoptosis in DUSP12-deficient hepatocytes and mice. In conclusion, DUSP12 protects against hepatic I/R injury and related inflammation and apoptosis. This regulatory role of DUSP12 is primarily through ASK1-JNK/p38 signaling pathway. Taken together, DUSP12 could be a potential therapeutic target for hepatic I/R injury.
Collapse
|
7
|
Sun B, Jiang J, Zhu X, Yang D, Cui Z, Zhang Y, Zhang M, Qian Y, Liu R, Yang W. Protective effects of gastrodin pretreatment on mouse hepatic ischemia-reperfusion occurring through antioxidant and anti-apoptotic mechanisms. Exp Ther Med 2021; 21:471. [PMID: 33767766 DOI: 10.3892/etm.2021.9902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) often occurs following surgical procedures such as liver resection and transplantation. However, despite its clinical prominence, to the best of our knowledge, there remain no effective strategies to treat HIRI. Therefore, the aim of present study was to identify therapeutic agents that can exert beneficial effects against HIRI. The present study found that following hepatic IR modeling in mice, gastrodin (Gas) pretreatment improved the IR outcomes in terms of the serum biochemical indexes (alanine transaminase and aspartate transaminase), tissue biochemical indexes (superoxide dismutase, malondialdehyde and reduced glutathione content) and tissue pathology (H&E staining). In addition, compared with those in the IR + vehicle group, the IR + Gas group showed upregulated expression levels of nuclear erythroid 2-related factor 2, heme oxygenase 1 and Bcl-2 as detected by western blotting and reverse transcription-quantitative PCR. The mRNA and protein expression levels of Bax and caspase-3 were downregulated in the IR + Gas group compared with the IR + vehicle group. Concurrently, no significant differences were observed in the parameters between the Sham + vehicle and the Sham + Gas groups, indicating that Gas pretreatment may not cause liver damage. In conclusion, the findings of the present study revealed that Gas pretreatment exerted a protective effect in HIRI through both antioxidant and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Bo Sun
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jie Jiang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Xinyan Zhu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Dan Yang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Zhenyu Cui
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yu Zhang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Minbo Zhang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yiting Qian
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Ruilin Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
8
|
Ferreira-Silva M, Faria-Silva C, Baptista PV, Fernandes E, Fernandes AR, Corvo ML. Drug delivery nanosystems targeted to hepatic ischemia and reperfusion injury. Drug Deliv Transl Res 2021; 11:397-410. [PMID: 33660214 DOI: 10.1007/s13346-021-00915-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Hepatic ischemia and reperfusion injury (IRI) is an acute inflammatory process that results from surgical interventions, such as liver resection surgery or transplantation, or hemorrhagic shock. This pathology has become a severe clinical issue, due to the increasing incidence of hepatic cancer and the high number of liver transplants. So far, an effective treatment has not been implemented in the clinic. Despite its importance, hepatic IRI has not attracted much interest as an inflammatory disease, and only a few reviews addressed it from a therapeutic perspective with drug delivery nanosystems. In the last decades, drug delivery nanosystems have proved to be a major asset in therapy because of their ability to optimize drug delivery, either by passive or active targeting. Passive targeting is achieved through the enhanced permeability and retention (EPR) effect, a main feature in inflammation that allows the accumulation of the nanocarriers in inflammation sites, enabling a higher efficacy of treatment than conventional therapies. These systems also can be actively targeted to specific compounds, such as inflammatory markers and overexpressed receptors in immune system intermediaries, allowing an even more specialized therapy that have already showed encouraging results. In this manuscript, we review drug delivery nanosystems designed for hepatic IRI treatment, addressing their current state in clinical trials, discussing the main hurdles that hinder their successful translation to the market and providing some suggestions that could potentially advance their clinical translation.
Collapse
Affiliation(s)
- Margarida Ferreira-Silva
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Catarina Faria-Silva
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Alexandra Ramos Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Maria Luísa Corvo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
9
|
Hemorheological and Microcirculatory Factors in Liver Ischemia-Reperfusion Injury-An Update on Pathophysiology, Molecular Mechanisms and Protective Strategies. Int J Mol Sci 2021; 22:ijms22041864. [PMID: 33668478 PMCID: PMC7918617 DOI: 10.3390/ijms22041864] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a multifactorial phenomenon which has been associated with adverse clinical outcomes. IRI related tissue damage is characterized by various chronological events depending on the experimental model or clinical setting. Despite the fact that IRI research has been in the spotlight of scientific interest for over three decades with a significant and continuous increase in publication activity over the years and the large number of pharmacological and surgical therapeutic attempts introduced, not many of these strategies have made their way into everyday clinical practice. Furthermore, the pathomechanism of hepatic IRI has not been fully elucidated yet. In the complex process of the IRI, flow properties of blood are not neglectable. Hemorheological factors play an important role in determining tissue perfusion and orchestrating mechanical shear stress-dependent endothelial functions. Antioxidant and anti-inflammatory agents, ischemic conditioning protocols, dynamic organ preservation techniques may improve rheological properties of the post-reperfusion hepatic blood flow and target endothelial cells, exerting a potent protection against hepatic IRI. In this review paper we give a comprehensive overview of microcirculatory, rheological and molecular–pathophysiological aspects of hepatic circulation in the context of IRI and hepatoprotective approaches.
Collapse
|
10
|
Li S, Qin Q, Luo D, Pan W, Wei Y, Xu Y, Zhu J, Shang L. Hesperidin ameliorates liver ischemia/reperfusion injury via activation of the Akt pathway. Mol Med Rep 2020; 22:4519-4530. [PMID: 33174025 PMCID: PMC7646746 DOI: 10.3892/mmr.2020.11561] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/03/2020] [Indexed: 01/07/2023] Open
Abstract
Hesperidin (HDN) is a bioflavonoid that serves a role as an antioxidant in biological systems. However, although HDN has hydrogen radical- and hydrogen peroxide-removal activities, the role of HDN in liver ischemia/reperfusion (I/R) injury remains unknown. This study aimed to determine the role of HDN in liver I/R injury. Male C57BL/6J wild-type (WT) mice were subjected to warm partial liver I/R injury. Liver damage was evaluated by measuring serum alanine aminotransferase (ALT) levels, cytokine production, oxidative stress indicators, tissue hematoxylin-eosin staining and cell death. The Akt signaling pathway was examined to elucidate the underlying mechanisms. HDN had no effect on ALT levels and tissue damage in WT mice without liver I/R injury. However, HDN significantly ameliorated liver I/R injury as measured by serum ALT levels and necrotic tissue areas. HDN decreased malondialdehyde content, but increased the levels of superoxide dismutase, catalase, glutathione peroxidase and glutathione. In addition, HDN significantly attenuated the mRNA expression levels of TNF-α, IL-6 and IL-1β after liver I/R injury. Furthermore, HDN protected the liver against apoptosis in liver I/R injury by increasing the levels of Bcl-2 and decreasing the levels of cleaved-caspase 3. Mechanistically, the levels of phosphorylated Akt were elevated by HDN during liver I/R injury. In addition, HDN could induce Akt activation in hepatocytes in vitro. Most importantly, treatment with the Akt inhibitor LY294002 in WT mice blocked the hepatoprotective effects of HDN in liver I/R injury. In summary, the results of the present study suggested that HDN may protect against liver I/R injury through activating the Akt pathway by ameliorating liver oxidative stress, suppressing inflammation and preventing hepatocyte apoptosis. HDN may be a useful factor for liver injury protection and a potential therapeutic treatment for liver I/R injury in the future.
Collapse
Affiliation(s)
- Shilai Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Quanlin Qin
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Daqing Luo
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Wenhui Pan
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Yuqing Wei
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Yansong Xu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Jijin Zhu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| | - Liming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R China
| |
Collapse
|
11
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
12
|
Liu B, Yan L, Jiao X, Sun X, Zhao Z, Yan J, Guo M, Zang Y. Lycopene Alleviates Hepatic Hypoxia/Reoxygenation Injury Through Nrf2/HO-1 Pathway in AML12 Cell. J Interferon Cytokine Res 2020; 40:406-417. [PMID: 32813603 DOI: 10.1089/jir.2020.0038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Bing Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lihong Yan
- The Library of the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuefei Jiao
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaozhi Sun
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zonggang Zhao
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Junwei Yan
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mingjin Guo
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yunjin Zang
- Institute of Transplantation Science, Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
13
|
Kamel EO, Hassanein EHM, Ahmed MA, Ali FEM. Perindopril Ameliorates Hepatic Ischemia Reperfusion Injury Via Regulation of NF-κB-p65/TLR-4, JAK1/STAT-3, Nrf-2, and PI3K/Akt/mTOR Signaling Pathways. Anat Rec (Hoboken) 2020; 303:1935-1949. [PMID: 31606943 DOI: 10.1002/ar.24292] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Hepatic ischemia reperfusion (IR) is an inevitable clinical problem for surgical procedures such as liver transplantation and liver resection. This study was designed to evaluate the protective effect of perindopril (PER) against hepatic IR injury. Thirty-two rats were used and randomly allocated into four groups. Sham control group was subjected to sham operation and received saline only, IR group was subjected to IR and received vehicle, PER group was pretreated with PER (one milligram per kilogram per day i.p. for 10 consecutive days), and IR+PER group was pretreated with PER then subjected to IR. Liver function biomarkers (aspartate aminotransferase and alanine aminotransferase), oxidative stress (glutathione, malondialdehyde, myeloperoxidase, and superoxide dismutase) and inflammation markers (tumor necrosis factor-alpha, interferon-gamma, and inteleukin-10 [IL-10]), mRNA expression of NF-κB-p65 and TLR-4, as well as protein expression of JAK1, STAT-3, PI3K, mTOR, Akt, and Nrf-2 were investigated concomitantly with histopathological examination. The results indicated that, hepatic IR induced a significant alteration in liver function biomarkers and structure, oxidative stress, and inflammation. At the molecular level, up-regulation of NF-κB-p65, TLR-4, JAK1, and STAT-3 concomitantly with down-regulation of Nrf-2, IL-10, PI3K, Akt, and mTOR were observed. These disturbances were alleviated by pretreatment of IR rats with PER in concomitant with hepatic structural improvement. Conclusively, the protective effect of PER presumably may be relevant to its ability to reduce oxidative stress, ameliorate the inflammatory processes, and modify the related signaling pathways. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1935-1949, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Asyut, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
14
|
Role of Akt Activation in PARP Inhibitor Resistance in Cancer. Cancers (Basel) 2020; 12:cancers12030532. [PMID: 32106627 PMCID: PMC7139751 DOI: 10.3390/cancers12030532] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have recently been introduced in the therapy of several types of cancers not responding to conventional treatments. However, de novo and acquired PARP inhibitor resistance is a significant limiting factor in the clinical therapy, and the underlying mechanisms are not fully understood. Activity of the cytoprotective phosphatidylinositol-3 kinase (PI3K)-Akt pathway is often increased in human cancer that could result from mutation, expressional change, or amplification of upstream growth-related factor signaling elements or elements of the Akt pathway itself. However, PARP-inhibitor-induced activation of the cytoprotective PI3K-Akt pathway is overlooked, although it likely contributes to the development of PARP inhibitor resistance. Here, we briefly summarize the biological role of the PI3K-Akt pathway. Next, we overview the significance of the PARP-Akt interplay in shock, inflammation, cardiac and cerebral reperfusion, and cancer. We also discuss a recently discovered molecular mechanism that explains how PARP inhibition induces Akt activation and may account for apoptosis resistance and mitochondrial protection in oxidative stress and in cancer.
Collapse
|
15
|
Li S, Yi Z, Deng M, Scott MJ, Yang C, Li W, Lei Z, Santerre NM, Loughran P, Billiar TR. TSLP protects against liver I/R injury via activation of the PI3K/Akt pathway. JCI Insight 2019; 4:129013. [PMID: 31723054 DOI: 10.1172/jci.insight.129013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/10/2019] [Indexed: 01/09/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) is a cytokine mainly released by epithelial cells that plays important roles in inflammation, autoimmune disease, and cancer. While TSLP is expressed in the liver at high levels, the role of TSLP in liver ischemia/reperfusion (I/R) injury remains unknown. Experiments were carried out to determine the role of TSLP in liver I/R injury. Wild-type (WT) and TSLP receptor-knockout (TSLPR-/-) mice were subjected to liver partial warm I/R injury. Liver injury was assessed by measuring serum alanine aminotransferase (ALT) level, necrotic areas by liver histology, hepatocyte death, and local hepatic inflammatory responses. Signal pathways were explored in vivo and in vitro to identify possible mechanisms for TSLP in I/R injury. TSLP and TSLPR protein expression increased during liver I/R in vivo and following hepatocyte hypoxia/reoxygenation in vitro. Deletion of TSLPR or neutralization of TSLP with anti-TSLP antibody exacerbated liver injury in terms of serum ALT levels as well as necrotic areas in liver histology. Administration of exogenous recombinant mouse TSLP to WT mice significantly reduced liver damage compared with controls, but failed to prevent I/R injury in TSLPR-/- mice. TSLP induced autophagy in hepatocytes during liver I/R injury. Mechanistically, Akt was activated in WT mice during liver I/R injury. The opposite results were observed in TSLPR-/- mice. In addition, TSLP could directly induce Akt activation in hepatocytes independent of nonparenchymal cells in vitro. Furthermore, the Akt agonist, insulin-like growth factor-1 (IGF-1), prevented I/R injury in TSLPR-/- mice and an Akt inhibitor, LY294002, blocked the protective effects of TSLP in WT mice subjected to I/R. Our data indicate that TSLP protects against liver I/R injury via activation of the PI3K/Akt pathway. Through this pathway, TSLP induces autophagy in hepatocytes. Thus, TSLP is a potent inhibitor of stress-induced hepatocyte necrosis.
Collapse
Affiliation(s)
- Shilai Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhongjie Yi
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Hepatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chenxuan Yang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,School of Medicine, Tsinghua University, Beijing, China
| | - Wenbo Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Lei
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Hepatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Nicole M Santerre
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for Biologic Imaging, University of Pittsburgh, Pennsylvania, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Rampes S, Ma D. Hepatic ischemia-reperfusion injury in liver transplant setting: mechanisms and protective strategies. J Biomed Res 2019; 33:221-234. [PMID: 32383437 DOI: 10.7555/jbr.32.20180087] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatic ischemia-reperfusion injury is a major cause of liver transplant failure, and is of increasing significance due to increased use of expanded criteria livers for transplantation. This review summarizes the mechanisms and protective strategies for hepatic ischemia-reperfusion injury in the context of liver transplantation. Pharmacological therapies, the use of pre-and post-conditioning and machine perfusion are discussed as protective strategies. The use of machine perfusion offers significant potential in the reconditioning of liver grafts and the prevention of hepatic ischemia-reperfusion injury, and is an exciting and active area of research, which needs more study clinically.
Collapse
Affiliation(s)
- Sanketh Rampes
- Faculty of Life Sciences & Medicine, King's College London, London SE1 1U, UK
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, UK
| |
Collapse
|
17
|
Zhou Z, Chen Q, Wan L, Zheng D, Li Z, Wu Z. Dexmedetomidine protects hepatic cells against oxygen-glucose deprivation/reperfusion injury via lncRNA CCAT1. Cell Biol Int 2018; 42:1250-1258. [PMID: 29851220 DOI: 10.1002/cbin.10996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/27/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Zhuang Zhou
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Qingsong Chen
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Lei Wan
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Daofeng Zheng
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Zhongtang Li
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| | - Zhongjun Wu
- Department of Hepatobillary Surgery; The First Affiliated Hospital of Chongqing Medical University; No.1 Youyi Road Yuzhong District Chongqing P.R. China
| |
Collapse
|
18
|
Novel Targets for Treating Ischemia-Reperfusion Injury in the Liver. Int J Mol Sci 2018; 19:ijms19051302. [PMID: 29701719 PMCID: PMC5983804 DOI: 10.3390/ijms19051302] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is a major complication of hemorrhagic shock, liver transplantation, and other liver surgeries. It is one of the leading causes for post-surgery hepatic dysfunction, always leading to morbidity and mortality. Several strategies, such as low-temperature reperfusion and ischemic preconditioning, are useful for ameliorating liver IRI in animal models. However, these methods are difficult to perform in clinical surgeries. It has been reported that the activation of peroxisome proliferator activated receptor gamma (PPARγ) protects the liver against IRI, but with unidentified direct target gene(s) and unclear mechanism(s). Recently, FAM3A, a direct target gene of PPARγ, had been shown to mediate PPARγ’s protective effects in liver IRI. Moreover, noncoding RNAs, including LncRNAs and miRNAs, had also been reported to play important roles in the process of hepatic IRI. This review briefly discussed the roles and mechanisms of several classes of important molecules, including PPARγ, FAM3A, miRNAs, and LncRNAs, in liver IRI. In particular, oral administration of PPARγ agonists before liver surgery or liver transplantation to activate hepatic FAM3A pathways holds great promise for attenuating human liver IRI.
Collapse
|
19
|
Bejaoui M, Zaouali MA, Sakly R, Ben Abdennebi H. Olprinone protects the liver from ischemia–reperfusion injury through oxidative stress prevention and protein kinase Akt activation. Can J Physiol Pharmacol 2018; 96:227-231. [DOI: 10.1139/cjpp-2017-0153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver ischemia–reperfusion (IR) injury is inevitable in surgical procedures such as hepatic resection and liver transplantation. It represents a leading cause of liver graft dysfunction and primary nonfunction after transplantation. Phosphodiesterase (PDE) inhibitors are emerging as effective drugs able to reduce IR damage. The aim of this study was to investigate the effect of selective PDE-3 inhibitor olprinone (Olp) against liver IR injury. Male Wistar rats were subjected to 1 h of partial warm ischemia (70%) followed by 6 h of reperfusion. Before ischemia, rats were treated with saline (IR group), Olp (Olp group), or Olp with Akt inhibitor LY294002 (Olp plus LY group). After reperfusion, hepatic injury (transaminase activities), mitochondrial damage (glutamate dehydrogenase activity), oxidative stress (malondialdehyde and glutathione concentrations and catalase and superoxide dismutase activities), and protein kinase Akt activation were evaluated. Rat treatment with Olp reduced liver injury, prevented mitochondrial damage, decreased lipid peroxidation, and enhanced antioxidant enzymes. Also, Olp induced a significant activation in protein kinase Akt. Inhibition of Akt with LY294002 abolished all of the protective effects of Olp. In conclusion, Olp treatment may be an effective strategy in reducing liver IR injury through oxidative stress prevention and Akt activation.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Research Unit (UR12ES11) “Molecular Biology and Anthropology Applied to Development and Health”, Department of Physiology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
- Research Unit (UR12ES11) “Molecular Biology and Anthropology Applied to Development and Health”, Department of Physiology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Mohamed Amine Zaouali
- Research Unit (UR12ES11) “Molecular Biology and Anthropology Applied to Development and Health”, Department of Physiology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
- Research Unit (UR12ES11) “Molecular Biology and Anthropology Applied to Development and Health”, Department of Physiology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Rim Sakly
- Research Unit (UR12ES11) “Molecular Biology and Anthropology Applied to Development and Health”, Department of Physiology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
- Research Unit (UR12ES11) “Molecular Biology and Anthropology Applied to Development and Health”, Department of Physiology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Research Unit (UR12ES11) “Molecular Biology and Anthropology Applied to Development and Health”, Department of Physiology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
- Research Unit (UR12ES11) “Molecular Biology and Anthropology Applied to Development and Health”, Department of Physiology, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
20
|
Ribeiro Júnior RFG, Couteiro RP, Monteiro AM, Rodrigues IADS, Cavalcante LCDC, Gouveia EHH, Galvão LN, Lopes LRO, Yasojima EY, Brito MVH. Perconditioning associated to hypertonic saline solution on liver function improvement after ischemia/reperfusion injury. Acta Cir Bras 2017; 32:949-955. [DOI: 10.1590/s0102-865020170110000006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/27/2017] [Indexed: 01/14/2023] Open
|
21
|
Arumugam S, Girish Subbiah K, Kemparaju K, Thirunavukkarasu C. Neutrophil extracellular traps in acrolein promoted hepatic ischemia reperfusion injury: Therapeutic potential of NOX2 and p38MAPK inhibitors. J Cell Physiol 2017; 233:3244-3261. [PMID: 28884828 DOI: 10.1002/jcp.26167] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/24/2017] [Indexed: 12/24/2022]
Abstract
Neutrophil is a significant contributor to ischemia reperfusion (IR) induced liver tissue damage. However, the exact role of neutrophils in IR induced innate immune activation and liver damage is not quite clear. Our study sheds light on the role of chronic oxidative stress end products in worsening the IR inflammatory process by neutrophil recruitment and activation following liver surgery. We employed specific inhibitors for molecular targets-NOX2 (NADPH oxidase 2) and P38 MAPK (Mitogen activated protein kinase) signal to counteract neutrophil activation and neutrophil extracellular trap (NET) release induced liver damage in IR injury. We found that acrolein initiated neutrophil chemotaxis and induced NET release both in vitro and in vivo. Acrolein exposure caused NET induced nuclear and mitochondrial damage in HepG2 cells as well as aggravated the IR injury in rat liver. Pretreatment with F-apocynin and naringin, efficiently suppressed acrolein induced NET release in vitro. Notably, it suppressed the expression of inflammatory cytokines, P38MAPK-ERK activation, and apoptotic signals in rat liver exposed to acrolein and subjected to IR. Moreover, this combination effectively attenuated acrolein induced NET release and hepatic IR injury. In the current study we have shown that the acrolein accumulation in liver due to chronic stress, is responsible for neutrophil recruitment and its activation leading to NET induced liver damage during surgery. Our study shows that therapeutic targeting of NOX2 and P38MAPK signaling in patients with chronic hepatic disorders would improve post operative hepatic function and survival.
Collapse
Affiliation(s)
- Suyavaran Arumugam
- Department of Biochemistry and Molecular Biology, School of life sciences, Pondicherry University, Pondicherry, India
| | | | | | - Chinnasamy Thirunavukkarasu
- Department of Biochemistry and Molecular Biology, School of life sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|