1
|
Corley RA, Kabilan S, Kuprat AP, Carson JP, Jacob RE, Minard KR, Teeguarden JG, Timchalk C, Pipavath S, Glenny R, Einstein DR. Comparative Risks of Aldehyde Constituents in Cigarette Smoke Using Transient Computational Fluid Dynamics/Physiologically Based Pharmacokinetic Models of the Rat and Human Respiratory Tracts. Toxicol Sci 2015; 146:65-88. [PMID: 25858911 PMCID: PMC4476461 DOI: 10.1093/toxsci/kfv071] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Computational fluid dynamics (CFD) modeling is well suited for addressing species-specific anatomy and physiology in calculating respiratory tissue exposures to inhaled materials. In this study, we overcame prior CFD model limitations to demonstrate the importance of realistic, transient breathing patterns for predicting site-specific tissue dose. Specifically, extended airway CFD models of the rat and human were coupled with airway region-specific physiologically based pharmacokinetic (PBPK) tissue models to describe the kinetics of 3 reactive constituents of cigarette smoke: acrolein, acetaldehyde and formaldehyde. Simulations of aldehyde no-observed-adverse-effect levels for nasal toxicity in the rat were conducted until breath-by-breath tissue concentration profiles reached steady state. Human oral breathing simulations were conducted using representative aldehyde yields from cigarette smoke, measured puff ventilation profiles and numbers of cigarettes smoked per day. As with prior steady-state CFD/PBPK simulations, the anterior respiratory nasal epithelial tissues received the greatest initial uptake rates for each aldehyde in the rat. However, integrated time- and tissue depth-dependent area under the curve (AUC) concentrations were typically greater in the anterior dorsal olfactory epithelium using the more realistic transient breathing profiles. For human simulations, oral and laryngeal tissues received the highest local tissue dose with greater penetration to pulmonary tissues than predicted in the rat. Based upon lifetime average daily dose comparisons of tissue hot-spot AUCs (top 2.5% of surface area-normalized AUCs in each region) and numbers of cigarettes smoked/day, the order of concern for human exposures was acrolein > formaldehyde > acetaldehyde even though acetaldehyde yields were 10-fold greater than formaldehyde and acrolein.
Collapse
Affiliation(s)
- Richard A Corley
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Senthil Kabilan
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Andrew P Kuprat
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - James P Carson
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Richard E Jacob
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Kevin R Minard
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Justin G Teeguarden
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Charles Timchalk
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Sudhakar Pipavath
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Robb Glenny
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| | - Daniel R Einstein
- *Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352; Texas Advanced Computing Center, University of Texas, Austin, Texas 78758; Radiology, University of Washington, Seattle, Washington 98195; and Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
3
|
Sensory detection and responses to toxic gases: mechanisms, health effects, and countermeasures. Ann Am Thorac Soc 2010; 7:269-77. [PMID: 20601631 DOI: 10.1513/pats.201001-004sm] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inhalation of reactive gases and vapors can lead to severe damage of the airways and lung, compromising the function of the respiratory system. Exposures to oxidizing, electrophilic, acidic, or basic gases frequently occur in occupational and ambient environments. Corrosive gases and vapors such as chlorine, phosgene, and chloropicrin were used as warfare agents and in terrorist acts. Chemical airway exposures are detected by the olfactory, gustatory, and nociceptive sensory systems that initiate protective physiological and behavioral responses. This review focuses on the role of airway nociceptive sensory neurons in chemical sensing and discusses the recent discovery of neuronal receptors for reactive chemicals. Using physiological, imaging, and genetic approaches, Transient Receptor Potential (TRP) ion channels in sensory neurons were shown to respond to a wide range of noxious chemical stimuli, initiating pain, respiratory depression, cough, glandular secretions, and other protective responses. TRPA1, a TRP ion channel expressed in chemosensory C-fibers, is activated by almost all oxidizing and electrophilic chemicals, including chlorine, acrolein, tear gas agents, and methyl isocyanate, the highly noxious chemical released in the Bhopal disaster. Chemicals likely activate TRPA1 through covalent protein modification. Animal studies using TRPA1 antagonists or TRPA1-deficient mice confirmed the role of TRPA1 in chemically induced respiratory reflexes, pain, and inflammation in vivo. New research shows that sensory neurons are not merely passive sensors of chemical exposures. Sensory channels such as TRPA1 are essential for maintenance of airway inflammation in asthma and may contribute to the progression of airway injury following high-level chemical exposures.
Collapse
|
4
|
Lanosa MJ, Willis DN, Jordt S, Morris JB. Role of metabolic activation and the TRPA1 receptor in the sensory irritation response to styrene and naphthalene. Toxicol Sci 2010; 115:589-95. [PMID: 20176620 DOI: 10.1093/toxsci/kfq057] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The current study was aimed at examining the role of cytochrome P450 (CYP450) activation and the electrophile-sensitive transient receptor potential ankyrin 1 receptor (TRPA1) in mediating the sensory irritation response to styrene and naphthalene. Toward this end, the sensory irritation to these vapors was measured in female C57Bl/6J mice during 15-min exposure via plethysmographic measurement of the duration of braking at the onset of each expiration. The sensory irritation response to 75 ppm styrene and 7 ppm naphthalene was diminished threefold or more in animals pretreated with the CYP450 inhibitor metyrapone, providing evidence of the role of metabolic activation in the response to these vapors. The sensory irritation response to styrene (75 ppm) and naphthalene (7.6 ppm) was virtually absent in TRPA1-/- knockout mice, indicating the critical role of this receptor in mediating the response. Thus, these results support the hypothesis that styrene and naphthalene vapors initiate the sensory irritation response through TRPA1 detection of their CYP450 metabolites.
Collapse
Affiliation(s)
- Michael J Lanosa
- Toxicology Program, Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | |
Collapse
|
5
|
Muttray A, Gosepath J, Brieger J, Faldum A, Pribisz A, Mayer-Popken O, Jung D, Rossbach B, Mann W, Letzel S. No acute effects of an exposure to 50 ppm acetaldehyde on the upper airways. Int Arch Occup Environ Health 2008; 82:481-8. [PMID: 18716790 DOI: 10.1007/s00420-008-0354-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 08/04/2008] [Indexed: 11/24/2022]
Abstract
OBJECTIVE German MAK value of acetaldehyde has been fixed at 50 ppm to prevent from irritating effects. The threshold value is mainly based on animal experiments. The aim of this study was to evaluate acute effects of an exposure to 50 ppm acetaldehyde on the upper airways of human subjects. METHODS Twenty subjects were exposed to 50 ppm acetaldehyde and to air in an exposure chamber for 4 h according to a crossover design. Subjective symptoms were assessed by questionnaire. Olfactory threshold for n-butanol and mucociliary transport time were measured before and after exposure. Concentrations of interleukin 1beta and interleukin 8 were determined in nasal secretions taken after exposure. mRNA levels of interleukins 1beta, 6 and 8, tumour necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, monocyte chemotactic protein 1, and cyclooxygenases 1 and 2 were measured in nasal epithelial cells, gained after exposure. Possible effects were investigated by semiparametric and parametric crossover analyses. RESULTS Exposure to acetaldehyde did not cause any subjective irritating symptoms. Olfactory threshold did not change. Mucociliary transport time increased insignificantly after exposure to acetaldehyde. Neither concentrations of interleukins in nasal secretions nor mRNA levels of inflammatory factors were higher after exposure to acetaldehyde. CONCLUSION An acute exposure to 50 ppm acetaldehyde did not cause any adverse effects in test subjects.
Collapse
Affiliation(s)
- A Muttray
- Institute of Occupational, Social and Environmental Medicine, University of Mainz, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|