1
|
Abudumutailifu M, Shang X, Wang L, Zhang M, Kang H, Chen Y, Li L, Ju R, Li B, Ouyang H, Tang X, Li C, Wang L, Wang X, George C, Rudich Y, Zhang R, Chen J. Unveiling the Molecular Characteristics, Origins, and Formation Mechanism of Reduced Nitrogen Organic Compounds in the Urban Atmosphere of Shanghai Using a Versatile Aerosol Concentration Enrichment System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7099-7112. [PMID: 38536960 DOI: 10.1021/acs.est.3c04071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Reduced nitrogen-containing organic compounds (NOCs) in aerosols play a crucial role in altering their light-absorption properties, thereby impacting regional haze and climate. Due to the low concentration levels of individual NOCs in the air, the utilization of accurate detection and quantification technologies becomes essential. For the first time, this study investigated the diurnal variation, chemical characteristics, and potential formation pathways of NOCs in urban ambient aerosols in Shanghai using a versatile aerosol concentration enrichment system (VACES) coupled with HPLC-Q-TOF-MS. The results showed that NOCs accounted over 60% of identified components of urban organic aerosols, with O/N < 3 compounds being the major contributors (>70%). The predominance of the positive ionization mode suggested the prevalence of reduced NOCs. Higher relative intensities and number fractions of NOCs were observed during nighttime, while CHO compounds showed an opposite trend. Notably, a positive correlation between the intensity of NOCs and ammonium during the nighttime was observed, suggesting that the reaction of ammonium to form imines may be a potential pathway for the formation of reduced NOCs during the nighttime. Seven prevalent types of reduced NOCs in autumn and winter were identified and characterized by an enrichment of CH2 long-chain homologues. These NOCs included alkyl, cyclic, and aromatic amides in CHON compounds, as well as heterocyclic or cyclic amines and aniline homologue series in CHN compounds, which were associated with anthropogenic activities and may be capable of forming light-absorbing chromophores or posing harm to human health. The findings highlight the significant contributions of both primary emissions and ammonium chemistry, particularly amination processes, to the pollution of reduced NOCs in Shanghai's atmosphere.
Collapse
Affiliation(s)
- Munila Abudumutailifu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xiaona Shang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Miaomiao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Huihui Kang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Yunqian Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Ling Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Ruiting Ju
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Bo Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Huiling Ouyang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Xu Tang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Chunlin Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200072, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xinke Wang
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Christian George
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
- University Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Renhe Zhang
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai 200062, China
| |
Collapse
|
2
|
Zhu J, Wang Q, Han L, Zhang C, Wang Y, Tu K, Peng J, Wang J, Pan L. Effects of caprolactam content on curdlan-based food packaging film and detection by infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118942. [PMID: 32977105 DOI: 10.1016/j.saa.2020.118942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
In this study, we report a rapid statistical approach used in determining the caprolactam (CPL) content in curdlan packaging films, which is based on the spectral data observed in the near-infrared (NIR) and Mid-infrared (MIR) regions. At the first stage of the study, the CPL content was added into the curdlan films prepared by controlling the concentration, and then the effect of the CPL concentration on the measured mechanical properties of the produced films were evaluated. At the next stage, the NIR and MIR spectra of the curdlan films with different CPL concentrations were recorded by using the FT-NIR and FT-IR spectroscopy technique, and the spectral data to be used in the regression models in our quantitative analyses were carefully selected. It was observed that the curdlan film with 5% CPL exhibited the best mechanical properties. The obtained best correlation parameters which are used in evaluation of CPL content through the observed NIR and MIR spectral data are Rp = 0.9552, RMSEP = 1.2506 (NIR); Rp = 0.9092 and RMSEP = 1.9136 (MIR), respectively. These optimal values support the expectation that our statistical approach based on NIR and MIR data can provide a rapid, accurate and nondestructive way of determining CPL content in curdlan packaging films.
Collapse
Affiliation(s)
- Jingyi Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qian Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lu Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanyuan Wang
- Institute of Zhongqing Food Safety Inspection and Testing, Anhui Zhongqing Inspection and Testing Co. LTD, Hefei, Anhui 230088, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiahong Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
3
|
Neurotoxicity and Chemoreception: A Systematic Review of Neurotoxicity Effects on Smell and Taste. Neurol Clin 2020; 38:965-981. [PMID: 33040872 DOI: 10.1016/j.ncl.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several different types of exposure have the potential to produce olfactory and gustatory deficits related to neurotoxicity. Although the literature contains relatively few studies of such chemoreceptive dysfunction in the context of toxic exposure, this review explores the strength of such published associations. Several studies collectively demonstrated moderately strong evidence for an association between manganese dust exposure and olfactory deficits. Evidence of associations between individual chemicals, therapeutics, and composites, such as World Trade Center debris, and olfactory and gustatory deficits remains limited or mixed. Further need for controlled studies for clinical management, exposure limits, and policy development is identified.
Collapse
|