1
|
Li Y, Gao Y, Wang Y, Duan Y, Fu Y, Yang H, Xi J. Localization of an IgE epitope of glycinin A2 peptide chain. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3697-3704. [PMID: 38160247 DOI: 10.1002/jsfa.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION One of the main allergens in soybeans is glycinin, which seriously impacts the normal lives of allergic people. Previous studies have confirmed that thermal processing and thermal processing combined with ultrahigh-pressure processing could significantly reduce the antigenicity of glycinin. The dominant antigen region of acidic peptide chain A2 of G2 subunit was located by phage display experiment. METHODS In this paper, overlapping peptides and alanine substitution techniques were used to explore the key amino acids that significantly affect the antigenicity of A2 peptide chain. The purity of peptide 1, peptide 2 and peptide 3 was identified by mass spectrometry and high-performance liquid chromatography, and the results showed that the purity of the synthesized overlapping peptide was more than 90%. SDS-PAGE showed that the peptide was successfully coupled with bovine serum albumin. The antigenicity of the coupling peptide was tested by ELISA and Dot-Blot, and the allergenicity was detected by reacting with the serum of patients with soybean globulin allergy. CONCLUSION The results showed that peptide 3 has stronger antigenicity and sensitization. Alanine substitution technology allowed one to perform site-directed mutagenesis on peptide 3. Dot-Blot and ELISA tests showed that D259, E260, E261, Q263 and C266 may be the key amino acids that significantly affect the antigenicity of peptide 3. The research presented is of great significance for correctly guiding the production of safe food and preventing the occurrence of food allergic diseases. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingying Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yida Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yichao Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuying Duan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yang Fu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Huanhuan Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
2
|
Xi J, Li Y, Cheng H, Wang Y. Identification of allergenic epitopes destroyed by two processing technologies of glycinin A2 from soybean. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2700-2708. [PMID: 36335553 DOI: 10.1002/jsfa.12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/25/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Glycinin is one of the most highly allergenic proteins in soybeans, and G2 is one of the five allergenic subunits of glycinin. Compared with the alkaline chain, the acidic chain A2 of the G2 subunit has strong allergenicity. However, the precise epitopes of A2 and the epitopes destroyed during processing are still unknown. RESULTS In the present study, preparation of two specific antibodies damaged by processing and phage display techniques were applied to locate the antigenic epitopes of glycinin A2 polypeptide chains disrupted by two processing techniques (thermal processing and ultra-high pressure combined thermal processing). Bioinformatics methods were used to predict the possible epitopes of the A2 chain. The A2 chain and its overlapping segments were introduced into T7 phages and expressed on phage shell by phage display. An indirect enzyme-linked immunosorbent assay was used to screen for antigenic epitopes that had been disrupted by the two processing technologies. The results showed that the dominant antigenic region disrupted by processing was located mainly in the A2-3-B fragment. The reacting experiment with the serum of allergic patients showed that the A2-3-B fragment protein was not only an antigenic region, but also an allergenic region. The two processing technologies destroyed the allergenic epitopes of A2 chain, thereby reducing the allergenicity of protein. The amino acids where the dominant allergenic region disrupted by processing was located were: 233 AIVTVKGGLRVTAPAMRKPQQEEDDDDEEEQPQCVE268 . CONCLUSION Precise epitopes of the acidic chain A2 in glycinin were identified and epitopes destroyed in two common processing methods were also obtained. The application products of rapid detection of de-allergenicity effect of processed food can be developed according to the location of processed destruction allergenic region, which is of great significance with respect to preventing the occurrence of soybean allergenic diseases. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yingying Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Huibin Cheng
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yichao Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
3
|
Xu L, Zhang XM, Wen YQ, Zhao JL, Xu TC, Yong L, Lin H, Zhang HW, Li ZX. Comparison of tropomyosin released peptide and epitope mapping after in vitro digestion from fish (Larimichthys crocea), shrimp (Litopenaeus vannamei) and clam (Ruditapes philippinarum) through SWATH-MS based proteomics. Food Chem 2023; 403:134314. [DOI: 10.1016/j.foodchem.2022.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022]
|
4
|
Liu M, Han TJ, Huan F, Li MS, Xia F, Yang Y, Wu YH, Chen GX, Cao MJ, Liu GM. Effects of thermal processing on the allergenicity, structure, and critical epitope amino acids of crab tropomyosin. Food Funct 2021; 12:2032-2043. [DOI: 10.1039/d0fo02869j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food processing can change the structure and immunoreactivity of purified allergens, but the effect of food processing on the immunoreactivity of the processed and purified allergen is still poorly understood.
Collapse
|
5
|
Sugano S, Hirose A, Kanazashi Y, Adachi K, Hibara M, Itoh T, Mikami M, Endo M, Hirose S, Maruyama N, Abe J, Yamada T. Simultaneous induction of mutant alleles of two allergenic genes in soybean by using site-directed mutagenesis. BMC PLANT BIOLOGY 2020; 20:513. [PMID: 33176692 PMCID: PMC7656749 DOI: 10.1186/s12870-020-02708-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/19/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Soybean (Glycine max) is a major protein crop, because soybean protein has an amino acid score comparable to that of beef and egg white. However, many allergens have been identified among soybean proteins. A decrease in allergenic protein levels would be useful for expanding the market for soybean proteins and processed foods. Recently, the CRISPR/Cas9 system has been adopted as a powerful tool for the site-directed mutagenesis in higher plants. This system is expected to generate hypoallergenic soybean varieties. RESULTS We used two guide RNAs (gRNAs) and Agrobacterium-mediated transformation for simultaneous site-directed mutagenesis of two genes encoding the major allergens Gly m Bd 28 K and Gly m Bd 30 K in two Japanese soybean varieties, Enrei and Kariyutaka. We obtained two independent T0 Enrei plants and nine T0 Kariyutaka plants. Cleaved amplified polymorphic sequence (CAPS) analysis revealed that mutations were induced in both targeted loci of both soybean varieties. Sequencing analysis showed that deletions were the predominant mutation type in the targeted loci. The Cas9-free plants carrying the mutant alleles of the targeted loci with the transgenes excluded by genetic segregation were obtained in the T2 and T3 generations. Variable mutational spectra were observed in the targeted loci even in T2 and T3 progenies of the same T0 plant. Induction of multiple mutant alleles resulted in six haplotypes in the Cas9-free mutants derived from one T0 plant. Immunoblot analysis revealed that no Gly m Bd 28 K or Gly m Bd 30 K protein accumulated in the seeds of the Cas9-free plants. Whole-genome sequencing confirmed that a Cas9-free mutant had also no the other foreign DNA from the binary vector. Our results demonstrate the applicability of the CRISPR/Cas9 system for the production of hypoallergenic soybean plants. CONCLUSIONS Simultaneous site-directed mutagenesis by the CRISPR/Cas9 system removed two major allergenic proteins from mature soybean seeds. This system enables rapid and efficient modification of seed components in soybean varieties.
Collapse
Affiliation(s)
- Shota Sugano
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Aya Hirose
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Yuhei Kanazashi
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Kohei Adachi
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Miki Hibara
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Takeshi Itoh
- Bioinformatics Team, Advanced Analysis Center, National Agricultural and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masafumi Mikami
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agricultural and Food Research Organization, 1-2, Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Masaki Endo
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agricultural and Food Research Organization, 1-2, Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Sakiko Hirose
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agricultural and Food Research Organization, 1-2, Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Nobuyuki Maruyama
- Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Jun Abe
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
7
|
Bu G, Huang T, Li T. The separation and identification of the residual antigenic fragments in soy protein hydrolysates. J Food Biochem 2020; 44:e13144. [PMID: 31910494 DOI: 10.1111/jfbc.13144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/14/2019] [Accepted: 12/18/2019] [Indexed: 11/27/2022]
Abstract
Soybean is one of the major food allergens. In this study, soy protein isolate was hydrolyzed by Neutrase and Flavourzyme. The hydrolysates were separated by ultrafiltration and ion-exchange chromatography. The antigenicity of proteins was determined by indirect competitive ELISA. The molecular weight distribution was characterized by SDS-PAGE. The amino acid sequence of chromatography fractions was analyzed by LC-MS. The results showed that proteins with >50 kDa in hydrolysates had the highest antigenicity and were further separated into F1 -F5 fragments by ion-exchange chromatography. Fragment F4 , which was the most antigenic, was analyzed by LC-MS. The results of mass spectrometry showed that most of the peptides that contained antigen epitopes in chromatography fraction F4 belonged to glycinin subunits. The antigenicity of soy protein was reduced by enzymatic hydrolysis, but glycinin showed resistance to enzymatic hydrolysis. PRACTICAL APPLICATIONS: The identification of residual antigenicity in soy protein hydrolysates by LC-MS provides important information on the resistance mechanism of enzymatic hydrolysis of soybean protein allergens. In addition, the efficient separation of soy protein hydrolysates could be beneficial for developing low-allergenic soybean products.
Collapse
Affiliation(s)
- Guanhao Bu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Ting Huang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Tanghao Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
8
|
Xi J, He M, Pi J. Identification of antigenic sites destructed by high hydrostatic pressure (HHP) of the β subunit of β-conglycinin. Int J Biol Macromol 2019; 141:1287-1292. [PMID: 31499107 DOI: 10.1016/j.ijbiomac.2019.09.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 02/02/2023]
Abstract
β-conglycinin is one of the most allergenic proteins, and its constituent subunits α', α, and β are all potential allergens to humans. In the present study, we concentrated on the destructed antigenic sites of β subunit of β-conglycinin after high hydrostatic pressure (HHP) treatment. In this paper, the overlapping gene fragments of the β subunit of β-conglycinin were amplified by polymerase chain reaction (PCR) and cloned into T7 phage vectors. After being packaged in vitro, the recombinant T7 phage was constructed, and the overlapping fragments of the β subunit were displayed on the phage surface. The recombinant phages that expressed the overlapping fragments of the β subunit were used to react with specific antiserum by indirect ELISA to identify the HHP destructed antigenic sites. After three rounds of expression and identification, we used synthetic peptide technology to identify that the obtained fragment was a conformational epitope. We further confirmed that HHP treatment changed the conformational structure of β-conglycinin, which reduced the antigenicity of the protein.
Collapse
Affiliation(s)
- Jun Xi
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - MengXue He
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - JiangYi Pi
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|