1
|
Hancock CN, Germany T, Redd P, Timmons J, Lipford J, Burns S, Cervantes‐Perez SA, Libault M, Shen W, An YC, Kanizay L, Yerka M, Parrott WA. A strategy for identification and characterization of genic mutations using a temperature-sensitive chlorotic soybean mutant as an example. PLANT DIRECT 2024; 8:e70011. [PMID: 39513014 PMCID: PMC11539004 DOI: 10.1002/pld3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 09/22/2024] [Indexed: 11/15/2024]
Abstract
Screening a transposon-mutagenized soybean population led to the discovery of a recessively inherited chlorotic phenotype. This "y24" phenotype results in smaller stature, weaker stems, and a smaller root system. Genome sequencing identified 15 candidate genes with mutations likely to result in a loss of function. Amplicon sequencing of a segregating population was then used to narrow the list to a single candidate mutation, a single-base change in Glyma.07G102300 that disrupts splicing of the second intron. Single cell transcriptomic profiling indicates that this gene is expressed primarily in mesophyll cells, and RNA sequencing data indicate that it is upregulated in germinating seedlings by cold stress. Previous studies have shown that mutations to Os05g34040, the rice ortholog of Glyma.07G102300, produced a chlorotic phenotype that was more pronounced in cool temperatures. Growing soybean y24 mutants at lower temperatures also resulted in a more severe phenotype. In addition, transgenic expression of wild-type Glyma.07G102300 in the knockout mutant of the Arabidopsis ortholog At4930720 rescues the chlorotic phenotype, further supporting the hypothesis that the mutation in Glyma.07G102300 is causal of the y24 phenotype. The variant analysis strategy used to identify the genes underlying this phenotype provides a template for the study of other soybean mutants.
Collapse
Affiliation(s)
- C. Nathan Hancock
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Tetandianocee Germany
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Priscilla Redd
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Jack Timmons
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Jeffery Lipford
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Samantha Burns
- Department of Biological, Ecological, and Earth ScienceUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Sergio Alan Cervantes‐Perez
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- The School of Plant SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Marc Libault
- Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Wenhao Shen
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Yong‐qiang Charles An
- USDA‐ARS Plant Genetics Research UnitDanforth Plant Science CenterSaint LouisMissouriUSA
| | - Lisa Kanizay
- Institute of Plant Breeding, Genetics & Genomics and Department of Crop and Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Bayer Crop ScienceSt. LouisMissouriUSA
| | - Melinda Yerka
- Institute of Plant Breeding, Genetics & Genomics and Department of Crop and Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Agriculture, Veterinary and Rangeland SciencesUniversity of NevadaRenoNevadaUSA
| | - Wayne A. Parrott
- Institute of Plant Breeding, Genetics & Genomics and Department of Crop and Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Hancock CN, Germany T, Redd P, Timmons J, Lipford J, Burns S, Cervantes-Perez SA, Libault M, Shen W, An YQC, Kanizay L, Yerka M, Parrott WA. Identification and characterization of a temperature sensitive chlorotic soybean mutant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578604. [PMID: 38352530 PMCID: PMC10862810 DOI: 10.1101/2024.02.02.578604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Screening a transposon-mutagenized soybean population led to the discovery of a recessively inherited chlorotic phenotype. This "vir1" phenotype results in smaller stature, weaker stems, and a smaller root system with smaller nodules. Genome sequencing identified 15 candidate genes with mutations likely to result in a loss of function. Amplicon sequencing of a segregating population was then used to narrow the list to a single candidate mutation, a single-base change in Glyma.07G102300 that disrupts splicing of the second intron. Single cell transcriptomic profiling indicates that this gene is expressed primarily in mesophyll cells and RNA sequencing data indicates it is upregulated in germinating seedlings by cold stress. Previous studies have shown that mutations to Os05g34040, the rice homolog of Glyma.07G102300, produced a chlorotic phenotype that was more pronounced in cool temperatures. Growing soybean vir1 mutants at lower temperatures also resulted in a more severe phenotype. In addition, transgenic expression of wild type Glyma.07G102300 in the knockout mutant of the Arabidopsis homolog At4930720 rescues the chlorotic phenotype, further supporting the hypothesis that the mutation in Glyma.07G102300 is causal of the vir1 phenotype.
Collapse
Affiliation(s)
- C. Nathan Hancock
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | | | - Priscilla Redd
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | - Jack Timmons
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | - Jeffery Lipford
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | - Samantha Burns
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC
| | | | - Marc Libault
- Plant Science and Technology, University of Missouri, Columbia, MO
| | - Wenhao Shen
- Donald Danforth Plant Science Center, St. Louis, MO
| | - Yong-qiang Charles An
- USDA-ARS Plant Genetics Research Unit, Danforth Plant Science Center, Saint Louis, MO
| | - Lisa Kanizay
- Center for Applied Genetic Technology, University of Georgia, Athens, GA
| | - Melinda Yerka
- Center for Applied Genetic Technology, University of Georgia, Athens, GA
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV
| | - Wayne A. Parrott
- Center for Applied Genetic Technology, University of Georgia, Athens, GA
| |
Collapse
|
3
|
Ma L, Kong F, Sun K, Wang T, Guo T. From Classical Radiation to Modern Radiation: Past, Present, and Future of Radiation Mutation Breeding. Front Public Health 2022; 9:768071. [PMID: 34993169 PMCID: PMC8725632 DOI: 10.3389/fpubh.2021.768071] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Radiation mutation breeding has been used for nearly 100 years and has successfully improved crops by increasing genetic variation. Global food production is facing a series of challenges, such as rapid population growth, environmental pollution and climate change. How to feed the world's enormous human population poses great challenges to breeders. Although advanced technologies, such as gene editing, have provided effective ways to breed varieties, by editing a single or multiple specific target genes, enhancing germplasm diversity through mutation is still indispensable in modern and classical radiation breeding because it is more likely to produce random mutations in the whole genome. In this short review, the current status of classical radiation, accelerated particle and space radiation mutation breeding is discussed, and the molecular mechanisms of radiation-induced mutation are demonstrated. This review also looks into the future development of radiation mutation breeding, hoping to deepen our understanding and provide new vitality for the further development of radiation mutation breeding.
Collapse
Affiliation(s)
- Liqiu Ma
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China.,National Innovation Center of Radiation Application, Beijing, China
| | - Fuquan Kong
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, China.,National Innovation Center of Radiation Application, Beijing, China
| | - Kai Sun
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangdong, China
| | - Ting Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangdong, China
| |
Collapse
|
4
|
Morita R, Ichida H, Hayashi Y, Ishii K, Shirakawa Y, Usuda-Kogure S, Ichinose K, Hatashita M, Takagi K, Miura K, Kusajima M, Nakashita H, Endo T, Tojo Y, Okumoto Y, Sato T, Toriyama K, Abe T. Responsible Gene Analysis of Phenotypic Mutants Revealed the Linear Energy Transfer (LET)-Dependent Mutation Spectrum in Rice. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | - Kotaro Ishii
- RIKEN Nishina Center for Accelerator-Based Science
| | | | | | | | | | | | - Kotaro Miura
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| | - Miyuki Kusajima
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| | - Hideo Nakashita
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| | - Takashi Endo
- Miyagi Prefectural Furukawa Agricultural Experiment Station
| | | | | | - Tadashi Sato
- Graduate School of Agricultural Science, Tohoku University
| | - Kinya Toriyama
- Graduate School of Agricultural Science, Tohoku University
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Science
| |
Collapse
|
5
|
Tang S, Xian Y, Wang F, Luo C, Song W, Xie S, Chen X, Cao A, Li H, Liu H. Comparative transcriptome analysis of leaves during early stages of chilling stress in two different chilling-tolerant brown-fiber cotton cultivars. PLoS One 2021; 16:e0246801. [PMID: 33561168 PMCID: PMC7872267 DOI: 10.1371/journal.pone.0246801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 11/18/2022] Open
Abstract
Chilling stress generates significant inhibition of normal growth and development of cotton plants and lead to severe reduction of fiber quality and yield. Currently, little is known for the molecular mechanism of brown-fiber cotton (BFC) to respond to chilling stress. Herein, RNA-sequencing (RNA-seq)-based comparative analysis of leaves under 4°C treatment in two different-tolerant BFC cultivars, chilling-sensitive (CS) XC20 and chilling-tolerant (CT) Z1612, was performed to investigate the response mechanism. A total of 72650 unigenes were identified with eight commonly used databases. Venn diagram analysis identified 1194 differentially expressed genes (DEGs) with significant up-regulation in all comparison groups. Furthermore, enrichment analyses of COG and KEGG, as well as qRT-PCR validation, indicated that 279 genes were discovered as up-regulated DEGs (UDEGs) with constant significant increased expression in CT cultivar Z1612 groups at the dimensions of both each comparison group and treatment time, locating in the enriched pathways of signal transduction, protein and carbohydrate metabolism, and cell component. Moreover, the comprehensive analyses of gene expression, physiological index and intracellular metabolite detections, and ascorbate antioxidative metabolism measurement validated the functional contributions of these identified candidate genes and pathways to chilling stress. Together, this study for the first time report the candidate key genes and metabolic pathways responding to chilling stress in BFC, and provide the effective reference for understanding the regulatory mechanism of low temperature adaptation in cotton.
Collapse
Affiliation(s)
- Shouwu Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- China Colored-cotton (Group) Co., Ltd., Urumqi, China
| | - Yajie Xian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Cheng Luo
- China Colored-cotton (Group) Co., Ltd., Urumqi, China
| | - Wu Song
- China Colored-cotton (Group) Co., Ltd., Urumqi, China
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Haifeng Liu
- China Colored-cotton (Group) Co., Ltd., Urumqi, China
| |
Collapse
|
6
|
Oono Y, Ichida H, Morita R, Nozawa S, Satoh K, Shimizu A, Abe T, Kato H, Hase Y. Genome sequencing of ion-beam-induced mutants facilitates detection of candidate genes responsible for phenotypes of mutants in rice. Mutat Res 2020; 821:111691. [PMID: 32171089 DOI: 10.1016/j.mrfmmm.2020.111691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/07/2020] [Accepted: 02/17/2020] [Indexed: 05/28/2023]
Abstract
Ion beams are physical mutagens used for plant and microbe breeding that cause mutations via a mechanism distinct from those of chemical mutagens or gamma rays. We utilized whole-exome sequencing of rice DNA in order to understand the properties of ion beam-induced mutations in a genome-wide manner. DNA libraries were constructed from selected carbon-ion-beam-induced rice mutants by capturing with a custom probes covering 66.3 M bases of nearly all exons and miRNAs predicted in the genome. A total of 56 mutations, including 24 single nucleotide variations, 23 deletions, and 5 insertions, were detected in five mutant rice lines (two dwarf and three early-heading-date mutants). The mutations were distributed among all 12 chromosomes, and the average mutation frequency in the M1 generation was estimated to be 2.7 × 10-7 per base. Many single base insertions and deletions were associated with homopolymeric repeats, whereas larger deletions up to seven base pairs were observed at polynucleotide repeats in the DNA sequences of the mutation sites. Of the 56 mutations, six were classified as high-impact mutations that caused a frame shift or loss of exons. A gene that was functionally related to the phenotype of the mutant was disrupted by a high-impact mutation in four of the five lines tested, suggesting that whole-exome sequencing of ion-beam-irradiated mutants could facilitate the detection of candidate genes responsible for the mutant phenotypes.
Collapse
Affiliation(s)
- Yutaka Oono
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute (TARRI), Quantum Beam Science Research Directorate (QuBS), National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, Gunma, Japan.
| | - Hiroyuki Ichida
- Ion Beam Breeding Team, RIKEN Nishina Center for Accelerator-Based Science (RNC), RIKEN, Wako, Saitama, Japan
| | - Ryouhei Morita
- Ion Beam Breeding Team, RIKEN Nishina Center for Accelerator-Based Science (RNC), RIKEN, Wako, Saitama, Japan
| | - Shigeki Nozawa
- Department of Research Planning and Promotion, QuBS, QST, Takasaki, Gunma, Japan
| | - Katsuya Satoh
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute (TARRI), Quantum Beam Science Research Directorate (QuBS), National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, Gunma, Japan
| | - Akemi Shimizu
- Radiation Breeding Division (RBD), Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), Hitachi-ohmiya, Ibaraki, Japan
| | - Tomoko Abe
- Ion Beam Breeding Team, RIKEN Nishina Center for Accelerator-Based Science (RNC), RIKEN, Wako, Saitama, Japan
| | - Hiroshi Kato
- Radiation Breeding Division (RBD), Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), Hitachi-ohmiya, Ibaraki, Japan
| | - Yoshihiro Hase
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute (TARRI), Quantum Beam Science Research Directorate (QuBS), National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, Gunma, Japan
| |
Collapse
|
7
|
Chen X, Feng H, Du Y, Luo S, Li W, Yu L, Feng Z, Cui T, Zhou L. Genetic polymorphisms in mutagenesis progeny of Arabidopsis thaliana irradiated by carbon-ion beams and γ-rays irradiations. Int J Radiat Biol 2019; 96:267-275. [PMID: 31692404 DOI: 10.1080/09553002.2020.1688412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Heavy-ion beams and γ-rays are popular physical mutagenesis to generate mutations in higher plants. It has been found that they show different mutation frequencies and spectrums of phenotype induction, however, the characteristics of heavy-ion beams on genetic polymorphism have not been clarified by comparing with γ-rays.Materials and methods: In the present study, seeds of Arabidopsis thaliana were exposed to carbon-ion beams (with linear energy transfer (LET) of 50 keV/μm) and γ-rays (with average LET of 0.2 keV/μm) irradiation. By using inter-simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) analysis, the genetic polymorphism of both M1 and M3 plants were investigated, respectively.Results: Carbon-ion beams induced relatively higher polymorphism rate in both M1 and M3 generation than γ-rays: the polymorphism rates of M1 plants derived from carbon-ion beams irradiation are 12.87% (ISSR-C) and 9.01% (RAPD-C), while are 7.67% (ISSR-γ) and 1.45% (RAPD-γ) of plants derived from γ-rays. In M3 generation, the polymorphism rates of ISSR-C, RAPD-C, ISSR-γ, and RAPD-γ are 17.64%, 22.79%, 12.10%, and 2.82%, respectively.Conclusions: In summary, the exposure to carbon-ion beams and γ-rays lead to the change of genomic DNA of A. thaliana, which could be tested in M1 plants and M3 plants by ISSR and RAPD technology. So, both carbon-ion beams and γ-rays can induce variations of genetic polymorphisms in M1 plants and M3 plants. The genetic polymorphisms of M1 plants and M3 plants induced by carbon-ion beams are higher than γ-rays, indicating that heavy-ion beams irradiations mutation breeding is more advantageous than conventional ionizing radiations. Average molecular polymorphism of M1 plants is lower than M3 mutants, by nearly 4.77% (ISSR-C), 13.78% (RAPD-C), 4.43% (ISSR-γ), and 1.37% (RAPD-γ). We hope our study will provide basic information for understanding the effects of carbon-ion beams and γ-rays for plant mutation breeding.
Collapse
Affiliation(s)
- Xia Chen
- Department of Biophysics, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hui Feng
- Department of Biophysics, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yan Du
- Department of Biophysics, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shanwei Luo
- Department of Biophysics, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Wenjian Li
- Department of Biophysics, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lixia Yu
- Department of Biophysics, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Zhuo Feng
- Department of Biophysics, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tao Cui
- Department of Biophysics, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Libin Zhou
- Department of Biophysics, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Baiyin Innovation Academy for Heavy Ion Bioindustry, Baiyin, China
| |
Collapse
|
8
|
Wang L, Ma R, Yin Y, Jiao Z. Role of carbon ion beams irradiation in mitigating cold stress in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:341-347. [PMID: 30005407 DOI: 10.1016/j.ecoenv.2018.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/21/2018] [Accepted: 07/03/2018] [Indexed: 05/25/2023]
Abstract
Carbon ion beams irradiation as an important type of ionizing radiation is one of the major approaches used to create mutants in plants. This study investigated the role of carbon ion beams irradiation in mitigating cold stress in Arabidopsis thaliana seedlings. The results showed that 50-Gy carbon ion beam irradiation appeared stimulatory effects on root length and fresh weight in Arabidopsis seedlings under cold stress. In comparison with control, the content of hydrogen peroxide, the production rate of superoxide anion radical, hydroxyl radical generation activity, and malondialdehyde content were obviously decreased in 50-Gy carbon ion beam irradiated seedlings in response to cold stress. Moreover, irradiated 50-Gy carbon ion beam in Arabidopsis seedlings were significantly triggered the efficiency of antioxidant under cold stress. Furthermore, we investigated the expression of cold-related genes in irradiated and non-irradiated samples. Carbon ion beams irradiation up-regulated the expression levels of C-REPEAT BINDING FACTORS (CBFs), INDUCER OF CBF EXPRESSION 1 (ICE1), ICE2, CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3) and cold-regulated COR genes, in response to cold stress. This study suggests that low-dose carbon ion beams irradiation can modulate the physiological responses and up-regulate cold signaling genes in mitigating cold stress in the growth of Arabidopsis seedlings.
Collapse
Affiliation(s)
- Lin Wang
- Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Ruonan Ma
- Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Yue Yin
- Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Zhen Jiao
- Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, China.
| |
Collapse
|
9
|
Liu X, Zhou Y, Xiao J, Bao F. Effects of Chilling on the Structure, Function and Development of Chloroplasts. FRONTIERS IN PLANT SCIENCE 2018; 9:1715. [PMID: 30524465 PMCID: PMC6262076 DOI: 10.3389/fpls.2018.01715] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/05/2018] [Indexed: 05/18/2023]
Abstract
Chloroplasts are the organelles that perform energy transformation in plants. The normal physiological functions of chloroplasts are essential for plant growth and development. Chilling is a common environmental stress in nature that can directly affect the physiological functions of chloroplasts. First, chilling can change the lipid membrane state and enzyme activities in chloroplasts. Then, the efficiency of photosynthesis declines, and excess reactive oxygen species (ROS) are produced. On one hand, excess ROS can damage the chloroplast lipid membrane; on the other hand, ROS also represent a stress signal that can alter gene expression in both the chloroplast and nucleus to help regenerate damaged proteins, regulate lipid homeostasis, and promote plant adaptation to low temperatures. Furthermore, plants assume abnormal morphology, including chlorosis and growth retardation, with some even exhibiting severe necrosis under chilling stress. Here, we review the response of chloroplasts to low temperatures and focus on photosynthesis, redox regulation, lipid homeostasis, and chloroplast development to elucidate the processes involved in plant responses and adaptation to chilling stress.
Collapse
Affiliation(s)
- Xiaomin Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yunlin Zhou
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Fei Bao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- *Correspondence: Fei Bao,
| |
Collapse
|
10
|
Du Y, Luo S, Li X, Yang J, Cui T, Li W, Yu L, Feng H, Chen Y, Mu J, Chen X, Shu Q, Guo T, Luo W, Zhou L. Identification of Substitutions and Small Insertion-Deletions Induced by Carbon-Ion Beam Irradiation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1851. [PMID: 29163581 PMCID: PMC5665000 DOI: 10.3389/fpls.2017.01851] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/11/2017] [Indexed: 05/06/2023]
Abstract
Heavy-ion beam irradiation is one of the principal methods used to create mutants in plants. Research on mutagenic effects and molecular mechanisms of radiation is an important subject that is multi-disciplinary. Here, we re-sequenced 11 mutagenesis progeny (M3) Arabidopsis thaliana lines derived from carbon-ion beam (CIB) irradiation, and subsequently focused on substitutions and small insertion-deletion (INDELs). We found that CIB induced more substitutions (320) than INDELs (124). Meanwhile, the single base INDELs were more prevalent than those in large size (≥2 bp). In details, the detected substitutions showed an obvious bias of C > T transitions, by activating the formation of covalent linkages between neighboring pyrimidine residues in the DNA sequence. An A and T bias was observed among the single base INDELs, in which most of these were induced by replication slippage at either the homopolymer or polynucleotide repeat regions. The mutation rate of 200-Gy CIB irradiation was estimated as 3.37 × 10-7 per site. Different from previous researches which mainly focused on the phenotype, chromosome aberration, genetic polymorphism, or sequencing analysis of specific genes only, our study revealed genome-wide molecular profile and rate of mutations induced by CIB irradiation. We hope our data could provide valuable clues for explaining the potential mechanism of plant mutation breeding by CIB irradiation.
Collapse
Affiliation(s)
- Yan Du
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shanwei Luo
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jiangyan Yang
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Tao Cui
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjian Li
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lixia Yu
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hui Feng
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuze Chen
- College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinhu Mu
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xia Chen
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
| | - Wenlong Luo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, China
| | - Libin Zhou
- Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Libin Zhou
| |
Collapse
|