1
|
Shymialevich D, Wójcicki M, Sokołowska B. The Novel Concept of Synergically Combining: High Hydrostatic Pressure and Lytic Bacteriophages to Eliminate Vegetative and Spore-Forming Bacteria in Food Products. Foods 2024; 13:2519. [PMID: 39200446 PMCID: PMC11353811 DOI: 10.3390/foods13162519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The article focuses on the ongoing challenge of eliminating vegetative and spore-forming bacteria from food products that exhibit resistance to the traditional preservation methods. In response to this need, the authors highlight an innovative approach based on the synergistic utilization of high-hydrostatic-pressure (HHP) and lytic bacteriophages. The article reviews the current research on the use of HHP and lytic bacteriophages to combat bacteria in food products. The scope includes a comprehensive review of the existing literature on bacterial cell damage following HHP application, aiming to elucidate the synergistic effects of these technologies. Through this in-depth analysis, the article aims to contribute to a deeper understanding of how these innovative techniques can improve food safety and quality. There is no available research on the use of HHP and bacteriophages in the elimination of spore-forming bacteria; however, an important role of the synergistic effect of HHP and lytic bacteriophages with the appropriate adjustment of the parameters has been demonstrated in the more effective elimination of non-spore-forming bacteria from food products. This suggests that, when using this approach in the case of spore-forming bacteria, there is a high chance of the effective inactivation of this biological threat.
Collapse
Affiliation(s)
- Dziyana Shymialevich
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland; (M.W.); (B.S.)
| | | | | |
Collapse
|
2
|
Tsutsuura S, Matsumoto M, Sakai K, Motegi R, Nishiumi T. Long-term storage under pressure in deep sea improved the microbiological safety and physical properties of whale meat. Heliyon 2024; 10:e29631. [PMID: 38655287 PMCID: PMC11036056 DOI: 10.1016/j.heliyon.2024.e29631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
This study aimed to clarify the effects of deep-sea pressure storage on the quality of whale meat, especially microbiological safety and physical properties, to examine the effectiveness of deep-sea storage for long-term aging of whale meat. Microbiological safety, physical properties, color and appearance, water content, water activity, and pH of whale meat were examined after storage in the deep sea at depths of 2200-6000 m (22-60 MPa) for 4 months. During storage under high pressure at a depth of >4000 m (40 MPa), the growth of aerobic bacteria was inhibited in whale meat. The toughness of whale meat stored in deep sea at a depth of >4000 m became significantly tender than that before deep-sea storage. Long-term storage of whale meat under high pressure and low-temperature conditions in the deep sea at a depth of >4000 m was clarified to improve the microbiological safety and tenderness of whale meat.
Collapse
Affiliation(s)
- Satomi Tsutsuura
- Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Maki Matsumoto
- Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Kana Sakai
- Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Ryosuke Motegi
- Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| | - Tadayuki Nishiumi
- Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| |
Collapse
|
3
|
Research Progress on the Effect of Autolysis to Bacillus subtilis Fermentation Bioprocess. FERMENTATION 2022. [DOI: 10.3390/fermentation8120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus subtilis is a gram-positive bacterium, a promising microorganism due to its strong extracellular protein secretion ability, non-toxic, and relatively mature industrial fermentation technology. However, cell autolysis during fermentation restricts the industrial application of B. subtilis. With the fast advancement of molecular biology and genetic engineering technology, various advanced procedures and gene editing tools have been used to successfully construct autolysis-resistant B. subtilis chassis cells to manufacture various biological products. This paper first analyses the causes of autolysis in B. subtilis from a mechanistic perspective and outlines various strategies to address autolysis in B. subtilis. Finally, potential strategies for solving the autolysis problem of B. subtilis are foreseen.
Collapse
|
4
|
Integrative Physiological and Transcriptome Analysis Reveals the Mechanism for the Repair of Sub-Lethally Injured Escherichia coli O157:H7 Induced by High Hydrostatic Pressure. Foods 2022; 11:foods11152377. [PMID: 35954143 PMCID: PMC9368309 DOI: 10.3390/foods11152377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
The application of high hydrostatic pressure (HHP) technology in the food industry has generated potential safety hazards due to sub-lethally injured (SI) pathogenic bacteria in food products. To address these problems, this study explored the repair mechanisms of HHP-induced SI Escherichia coli O157:H7. First, the repair state of SI E. coli O157:H7 (400 MPa for 5 min) was identified, which was cultured for 2 h (37 °C) in a tryptose soya broth culture medium. We found that the intracellular protein content, adenosine triphosphate (ATP) content, and enzyme activities (superoxide dismutase, catalase, and ATPase) increased, and the morphology was repaired. The transcriptome was analyzed to investigate the molecular mechanisms of SI repair. Using cluster analysis, we identified 437 genes enriched in profile 1 (first down-regulated and then tending to be stable) and 731 genes in profile 2 (up-regulated after an initial down-regulation). KEGG analysis revealed that genes involved in cell membrane biosynthesis, oxidative phosphorylation, ribosome, and aminoacyl-tRNA biosynthesis pathways were enriched in profile 2, whereas cell-wall biosynthesis was enriched in profile 1. These findings provide insights into the repair process of SI E. coli O157:H7 induced by HHP.
Collapse
|
5
|
HAMANAKA DAISUKE, MORITA KOKI. Effect of High Hydrostatic Pressure Treatment Combined with Alkaline Electrolyzed Water on the Injury and Growth Characteristics of Bacterial Spores. Biocontrol Sci 2022; 27:131-138. [DOI: 10.4265/bio.27.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - KOKI MORITA
- Faculty of Agriculture, Kagoshima University
| |
Collapse
|
6
|
Hao J, Lei Y, Gan Z, Zhao W, Shi J, Jia C, Sun A. Synergetic Inactivation Mechanism of Protocatechuic Acid and High Hydrostatic Pressure against Escherichia coli O157:H7. Foods 2021; 10:foods10123053. [PMID: 34945604 PMCID: PMC8701084 DOI: 10.3390/foods10123053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
With the wide application of high hydrostatic pressure (HHP) technology in the food industry, safety issues regarding food products, resulting in potential food safety hazards, have arisen. To address such problems, this study explored the synergetic bactericidal effects and mechanisms of protocatechuic acid (PCA) and HHP against Escherichia coli O157:H7. At greater than 200 MPa, PCA (1.25 mg/mL for 60 min) plus HHP treatments had significant synergetic bactericidal effects that positively correlated with pressure. After a combined treatment at 500 MPa for 5 min, an approximate 9.0 log CFU/mL colony decline occurred, whereas the individual HHP and PCA treatments caused 4.48 and 1.06 log CFU/mL colony decreases, respectively. Mechanistically, membrane integrity and morphology were damaged, and the permeability increased when E. coli O157: H7 was exposed to the synergetic stress of PCA plus HHP. Inside cells, the synergetic treatment additionally targeted the activities of enzymes such as superoxide dismutase, catalase and ATPase, which were inhibited significantly (p ≤ 0.05) when exposed to high pressure. Moreover, an analysis of circular dichroism spectra indicated that the synergetic treatment caused a change in DNA structure, which was expressed as the redshift of the characteristic absorption peak. Thus, the synergetic treatment of PCA plus HHP may be used as a decontamination method owing to the good bactericidal effects on multiple targets.
Collapse
Affiliation(s)
- Jingyi Hao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuqing Lei
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhilin Gan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Wanbin Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Junyan Shi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chengli Jia
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Aidong Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62336700
| |
Collapse
|
7
|
Yamamoto K, Zhang X, Inaoka T, Morimatsu K, Kimura K, Nakaura Y. Bacterial Injury Induced by High Hydrostatic Pressure. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-020-09271-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Nguyen HTM, Akanuma G, Hoa TTM, Nakai Y, Kimura K, Yamamoto K, Inaoka T. Ribosome Reconstruction during Recovery from High-Hydrostatic-Pressure-Induced Injury in Bacillus subtilis. Appl Environ Microbiol 2019; 86:e01640-19. [PMID: 31604775 PMCID: PMC6912085 DOI: 10.1128/aem.01640-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Vegetative cells of Bacillus subtilis can recover from injury after high-hydrostatic-pressure (HHP) treatment at 250 MPa. DNA microarray analysis revealed that substantial numbers of ribosomal genes and translation-related genes (e.g., translation initiation factors) were upregulated during the growth arrest phase after HHP treatment. The transcript levels of cold shock-responsive genes, whose products play key roles in efficient translation, and heat shock-responsive genes, whose products mediate correct protein folding or degrade misfolded proteins, were also upregulated. In contrast, the transcript level of hpf, whose product (Hpf) is involved in ribosome inactivation through the dimerization of 70S ribosomes, was downregulated during the growth arrest phase. Sucrose density gradient sedimentation analysis revealed that ribosomes were dissociated in a pressure-dependent manner and then reconstructed. We also found that cell growth after HHP-induced injury was apparently inhibited by the addition of Mn2+ or Zn2+ to the recovery medium. Ribosome reconstruction in the HHP-injured cells was also significantly delayed in the presence of Mn2+ or Zn2+ Moreover, Zn2+, but not Mn2+, promoted dimer formation of 70S ribosomes in the HHP-injured cells. Disruption of the hpf gene suppressed the Zn2+-dependent accumulation of ribosome dimers, partially relieving the inhibitory effect of Zn2+ on the growth recovery of HHP-treated cells. In contrast, it was likely that Mn2+ prevented ribosome reconstruction without stimulating ribosome dimerization. Our results suggested that both Mn2+ and Zn2+ can prevent ribosome reconstruction, thereby delaying the growth recovery of HHP-injured B. subtilis cells.IMPORTANCE HHP treatment is used as a nonthermal processing technology in the food industry to inactivate bacteria while retaining high quality of foods under suppressed chemical reactions. However, some populations of bacterial cells may survive the inactivation. Although the survivors are in a transient nongrowing state due to HHP-induced injury, they can recover from the injury and then start growing, depending on the postprocessing conditions. The recovery process in terms of cellular components after the injury remains unclear. Transcriptome analysis using vegetative cells of Bacillus subtilis revealed that the translational machinery can preferentially be reconstructed after HHP treatment. We found that both Mn2+ and Zn2+ prolonged the growth-arrested stage of HHP-injured cells by delaying ribosome reconstruction. It is likely that ribosome reconstruction is crucial for the recovery of growth ability in HHP-injured cells. This study provides further understanding of the recovery process in HHP-injured B. subtilis cells.
Collapse
Affiliation(s)
- Huyen Thi Minh Nguyen
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam
| | | | - Tu Thi Minh Hoa
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam
| | - Yuji Nakai
- Institute of Regional Innovation, Hirosaki University, Aomori, Japan
| | - Keitarou Kimura
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kazutaka Yamamoto
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Takashi Inaoka
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Ma J, Wang H, Yu L, Yuan W, Fu W, Gao F, Jiang Y. Dynamic self-recovery of injured Escherichia coli O157:H7 induced by high pressure processing. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Morimatsu K, Inaoka T, Nakaura Y, Yamamoto K. Injury and Recovery of Escherichia coli Cells in Phosphate-buffered Saline after High Hydrostatic Pressure Treatment. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kazuya Morimatsu
- Department of Food Production Science, Graduate School of Agriculture, Ehime University
| | - Takashi Inaoka
- Food Research Institute, National Agriculture and Food Research Organization
| | - Yoshiko Nakaura
- Food Research Institute, National Agriculture and Food Research Organization
| | - Kazutaka Yamamoto
- Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|
11
|
Yamamoto K, Kimura K, Inaoka T, Morimatsu K, Nakaura Y. Injury and Recovery in Bacterial Inactivation Induced by High Hydrostatic Pressure. J JPN SOC FOOD SCI 2018. [DOI: 10.3136/nskkk.65.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kazutaka Yamamoto
- Food Research Institute, National Agriculture and Food Research Organization
| | - Keitarou Kimura
- Food Research Institute, National Agriculture and Food Research Organization
| | - Takashi Inaoka
- Food Research Institute, National Agriculture and Food Research Organization
| | | | - Yoshiko Nakaura
- Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|