1
|
Qian H, Li Y. Nandina domestica Thunb.: a review of traditional uses, phytochemistry, pharmacology, and toxicology. Front Pharmacol 2024; 15:1407140. [PMID: 39045046 PMCID: PMC11263726 DOI: 10.3389/fphar.2024.1407140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Nandina domestica: Thunb. is a traditional Chinese herbal drug that has long been used in China and Japan for the treatment of colds, fevers, asthma, chronic bronchitis, conjunctivitis, whooping cough, pharyngeal tumors, etc. Published data have reported at least 366 constituents from N. domestica, including alkaloids, flavonoids, lignans, terpenoids, phenolic acids and their derivatives, fatty acids, and others. Of these, the isoquinoline alkaloids are considered characteristic markers for N. domestica. These alkaloids also showed the most promising bioactivities. The crude extracts or semi-purified constituents of N. domestica exhibit a variety of activities, including antitumor, dermatological, anti-inflammatory, antioxidant, antimicrobial, and detoxification activities, as well as effects on respiratory system, etc. The fruit is considered poisonous when eaten raw, with nausea, vomiting, diarrhea, and abdominal pain as side effects after ingestion. Most traditional uses are supported by biological activities demonstrated in modern experimental studies, suggesting a potential medicinal value of N. domestica. However, more information is needed on its mechanisms of activity, pharmacokinetic profile of the constituents, and its safety and efficacy profile in humans.
Collapse
Affiliation(s)
| | - Yanling Li
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Liu M, Li S. Nitrile biosynthesis in nature: how and why? Nat Prod Rep 2024; 41:649-671. [PMID: 38193577 DOI: 10.1039/d3np00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Covering: up to the end of 2023Natural nitriles comprise a small set of secondary metabolites which however show intriguing chemical and functional diversity. Various patterns of nitrile biosynthesis can be seen in animals, plants, and microorganisms with the characteristics of both evolutionary divergence and convergence. These specialized compounds play important roles in nitrogen metabolism, chemical defense against herbivores, predators and pathogens, and inter- and/or intraspecies communications. Here we review the naturally occurring nitrile-forming pathways from a biochemical perspective and discuss the biological and ecological functions conferred by diversified nitrile biosyntheses in different organisms. Elucidation of the mechanisms and evolutionary trajectories of nitrile biosynthesis underpins better understandings of nitrile-related biology, chemistry, and ecology and will ultimately benefit the development of desirable nitrile-forming biocatalysts for practical applications.
Collapse
Affiliation(s)
- Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Zheng YC, Ding LY, Jia Q, Lin Z, Hong R, Yu HL, Xu JH. A High-Throughput Screening Method for the Directed Evolution of Hydroxynitrile Lyase towards Cyanohydrin Synthesis. Chembiochem 2021; 22:996-1000. [PMID: 33146944 DOI: 10.1002/cbic.202000658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/03/2020] [Indexed: 11/10/2022]
Abstract
Chiral cyanohydrins are useful intermediates in the pharmaceutical and agricultural industries. In nature, hydroxynitrile lyases (HNLs) are a kind of elegant tool for enantioselective hydrocyanation of carbonyl compounds. However, currently available methods for demonstrating hydrocyanation are still stalled at precise, but low-throughput, GC or HPLC analyses. Herein, we report a chromogenic high-throughput screening (HTS) method that is feasible for the cyanohydrin synthesis reaction. This method was highly anti-interference and sensitive, and could be used to directly profile the substrate scope of HNLs either in cell-free extract or fermentation clear broth. This HTS method was also validated by generating new variants of PcHNL5 that presented higher catalytic efficiency and stronger acidic tolerance in variant libraries.
Collapse
Affiliation(s)
- Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| | - Liang-Yi Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| | - Qiao Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| | - Zuming Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), Shanghai, 200032, P. R. China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), Shanghai, 200032, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| |
Collapse
|
4
|
Motojima F, Izumi A, Nuylert A, Zhai Z, Dadashipour M, Shichida S, Yamaguchi T, Nakano S, Asano Y. R-hydroxynitrile lyase from the cyanogenic millipede, Chamberlinius hualienensis-A new entry to the carrier protein family Lipocalines. FEBS J 2020; 288:1679-1695. [PMID: 32679618 PMCID: PMC7983990 DOI: 10.1111/febs.15490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 01/05/2023]
Abstract
Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrin into cyanide and the corresponding aldehyde or ketone. Moreover, they catalyze the synthesis of cyanohydrin in the reverse reaction, utilized in industry for preparation of enantiomeric pure pharmaceutical ingredients and fine chemicals. We discovered a new HNL from the cyanogenic millipede, Chamberlinius hualienensis. The enzyme displays several features including a new primary structure, high stability, and the highest specific activity in (R)‐mandelonitrile ((R)‐MAN) synthesis (7420 U·mg−1) among the reported HNLs. In this study, we elucidated the crystal structure and reaction mechanism of natural ChuaHNL in ligand‐free form and its complexes with acetate, cyanide ion, and inhibitors (thiocyanate or iodoacetate) at 1.6, 1.5, 2.1, 1.55, and 1.55 Å resolutions, respectively. The structure of ChuaHNL revealed that it belongs to the lipocalin superfamily, despite low amino acid sequence identity. The docking model of (R)‐MAN with ChuaHNL suggested that the hydroxyl group forms hydrogen bonds with R38 and K117, and the nitrile group forms hydrogen bonds with R38 and Y103. The mutational analysis showed the importance of these residues in the enzymatic reaction. From these results, we propose that K117 acts as a base to abstract a proton from the hydroxyl group of cyanohydrins and R38 acts as an acid to donate a proton to the cyanide ion during the cleavage reaction of cyanohydrins. The reverse mechanism would occur during the cyanohydrin synthesis. (Photo: Dr. Yuko Ishida) Databases Structural data are available in PDB database under the accession numbers 6JHC, 6KFA, 6KFB, 6KFC, and 6KFD.
Collapse
Affiliation(s)
- Fumihiro Motojima
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Atsushi Izumi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Aem Nuylert
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Zhenyu Zhai
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Mohammad Dadashipour
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Sayaka Shichida
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Shogo Nakano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
5
|
Nuylert A, Motojima F, Khanongnuch C, Hongpattarakere T, Asano Y. Stabilization of Hydroxynitrile Lyases from Two Variants of Passion Fruit, Passiflora edulis Sims and Passiflora edulis Forma flavicarpa, by C-Terminal Truncation. Chembiochem 2020; 21:181-189. [PMID: 31562666 DOI: 10.1002/cbic.201900468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 11/07/2022]
Abstract
Because the synthesis of chiral compounds generally requires a broad range of substrate specificity and stable enzymes, screening for better enzymes and/or improvement of enzyme properties through molecular approaches is necessary for sustainable industrial development. Herein, the discovery of unique hydroxynitrile lyases (HNLs) from two species of passion fruits, Passiflora edulis forma flavicarpa (yellow passion fruit, PeHNL-Ny) and Passiflora edulis Sims (purple passion fruit, PeHNL-Np), isolated and purified from passion fruit leaves is reported. These are the smallest HNLs (comprising 121 amino acids). Amino acid sequences of both enzymes are 99 % identical; there is a difference of one amino acid in a consensus sequence. PeHNL-Np has an Ala residue at position 107 and is nonglycosylated at Asn105. Because it was confirmed that natural and glycosylated PeHNL-Ny showed superior thermostability, pH stability, and organic tolerance to that of PeHNL-Np, it has been speculated that protein engineering around the only glycosylation site, Asn105, located at the C-terminal region of PeHNL-Ny, might contribute to the stabilization of PeHNL. Therefore, the focus is on improved stability of the nonglycosylated PeHNL by truncating its C-terminal region. The C-terminal-truncated PeHNLΔ107 was obtained by truncating 15 amino acids from the C terminus followed by expression in Escherichia coli. PeHNLΔ107 expressed in E. coli was not glycosylated, and showed improved thermostability, solvent stability, and reusability similar to that of the wild-type glycosylated form of PeHNL expressed in Pichia pastoris. These data reveal that the lack of the high-flexibility region at the C terminus of PeHNL might be a possible reason for improving the stability of PeHNL.
Collapse
Affiliation(s)
- Aem Nuylert
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Fumihiro Motojima
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Chartchai Khanongnuch
- Division of Biotechnology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Tipparat Hongpattarakere
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Yasuhisa Asano
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|