1
|
Chang R, Zhou Z, Dong Y, Xu Y, Ji Z, Liu S, Mao J. Sensory-Guided Isolation, Identification, and Active Site Calculation of Novel Umami Peptides from Ethanol Precipitation Fractions of Fermented Grain Wine (Huangjiu). Foods 2023; 12:3398. [PMID: 37761107 PMCID: PMC10527695 DOI: 10.3390/foods12183398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Huangjiu is rich in low-molecular-weight peptides and has an umami taste. In order for its umami peptides to be discovered, huangjiu was subjected to ultrafiltration, ethanol precipitation, and macroporous resin purification processes. The target fractions were gathered according to sensory evaluation. Subsequently, we used peptidomics to identify the sum of 4158 peptides in most umami fractions. Finally, six novel umami peptides (DTYNPR, TYNPR, SYNPR, RFRQGD, NFHHGD, and FHHGD) and five umami-enhancing peptides (TYNPR, SYNPR, NFHHGD, FHHGD, and TVDGPSH) were filtered via virtual screening, molecular docking, and sensory verification. Moreover, the structure-activity relationship was discussed using computational approaches. Docking analysis showed that all umami peptides tend to bind with T1R1 through hydrogen bonds and hydrophobic forces, which involve key residues HIS71, ASP147, ARG151, TYR220, SER276, and ALA302. The active site calculation revealed that the positions of the key umami residues D and R in the terminal may cause taste differences in identified peptides.
Collapse
Affiliation(s)
- Rui Chang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.C.)
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.C.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Yong Dong
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.C.)
| | - Yuezheng Xu
- National Engineering Research Center for Huangjiu, Shaoxing 312000, China
| | - Zhongwei Ji
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.C.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.C.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (R.C.)
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing 312000, China
- National Engineering Research Center for Huangjiu, Shaoxing 312000, China
| |
Collapse
|
2
|
Miao Z, Hao H, Yan R, Wang X, Wang B, Sun J, Li Z, Zhang Y, Sun B. Individualization of Chinese alcoholic beverages: Feasibility towards a regulation of organic acids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Jia S, Wu Q, Wang S, Kan J, Zhang Z, Zhang X, Zhang X, Li J, Xu W, Du J, Wei W. Pea Peptide Supplementation in Conjunction With Resistance Exercise Promotes Gains in Muscle Mass and Strength. Front Nutr 2022; 9:878229. [PMID: 35873424 PMCID: PMC9302772 DOI: 10.3389/fnut.2022.878229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
It is generally considered that protein supplementation and resistance exercise significantly increase muscle mass and muscle growth. As the hydrolysis products of proteins, peptides may play the crucial role on muscle growth. In this study, male rats were orally administrated 0.4 g/kg body weight of pea peptide combined with 8 weeks of moderate intensity resistance exercise training. After treatment, the body gains, upper limb grip, muscle thickness, and wet weight of biceps brachii were tested, and the cross-sectional area of biceps brachii muscle fiber and the types of muscle fibers were determined by HE staining, immunofluorescence staining, and lactate dehydrogenase activity, respectively. Western blot analysis was used to investigate the level of growth-signaling pathway-related proteins. The results showed that pea peptide supplementation combined with resistance exercise training significantly increased body weight, upper limb grip, muscle thickness, wet weight of biceps brachii, and cross-sectional area of muscle fiber. Meanwhile, pea peptide supplementation obviously elevated the ratio of fast-twitch fiber (type II) and the expression of muscle growth-signaling pathway-related proteins. In addition, the PP2 oligopeptide in pea peptide with the amino acid sequence of LDLPVL induced a more significant promotion on C2C12 cell growth than other oligopeptides.
Collapse
Affiliation(s)
- Shaohui Jia
- Hubei Collaborative Innovation Center for Sports Intervention and Health Promotion, Wuhan Sports University, Wuhan, China
| | - Qiming Wu
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Shue Wang
- School of Public Health, Shandong University, Jinan, China
| | - Juntao Kan
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Zhao Zhang
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| | - Xiping Zhang
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| | - Xuejun Zhang
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| | - Jie Li
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| | - Wenhan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jun Du
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Wei Wei
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, China
| |
Collapse
|
4
|
Ito T, Taguchi Y, Oue H, Amano N, Nagae Y, Noge K, Hashizume K. Formation of taste-active pyroglutamyl peptide ethyl esters in sake by rice koji peptidases. Biosci Biotechnol Biochem 2021; 85:1476-1484. [PMID: 33720315 DOI: 10.1093/bbb/zbab041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/08/2021] [Indexed: 11/12/2022]
Abstract
Formation of taste-active pyroglutamyl (pGlu) peptide ethyl esters in sake was investigated: 2 enzymes (A and B) responsible for the esterification were purified from a rice koji extract. MADLI-TOF/TOF analysis after deglycosylation identified enzyme (A) as peptidase S28 (GenBank accession number OOO13707.1) and enzyme (B) as serine-type carboxypeptidase (accession number AO090010000534). Both enzymes hydrolyzed pGlu peptides and formed ethyl esters under sake mash conditions: acidic pH (3-4) and in ethanol (5%-20% v/v) aqueous solutions. Enzyme (A) formed pGlu penta-peptide ethyl esters from pGlu undeca-peptides by a prolyl endo-type reaction. Enzyme (B) formed (pGlu) deca-peptide and its ethyl esters from pGlu undeca-peptides in an exo-type reaction. We are the first to report the enzymatic ethyl esterification reaction in the formation of pGlu peptides by rice koji peptidases.
Collapse
Affiliation(s)
| | | | | | | | | | - Koji Noge
- Department of Biological Resource Sciences, Akita Prefectural University, Nakano Shimoshinjyo, Akita, Japan
| | | |
Collapse
|
5
|
Zhou M, Bu T, Zheng J, Liu L, Yu S, Li S, Wu J. Peptides in Brewed Wines: Formation, Structure, and Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2647-2657. [PMID: 33621074 DOI: 10.1021/acs.jafc.1c00452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The traditional low-alcoholic beverages, such as grape wine, sake, and rice wine, have been consumed all over the world for thousands of years, each with their unique methods of production that have been practiced for centuries. Moderate consumption of wine is generally touted as beneficial for health, although there is ongoing debate for the responsible components in wine. In this review, the structural and functional characteristics, the formation mechanisms, and their health-promoting activities of peptides in three brewed wines, grape wine, Chinese rice wine (also called Chinese Huangjiu or Chinese yellow wine), and Japanese sake, are discussed. The formation of peptides in wine imparts sensorial, technological, and biological attributes. Prospects on future research, with an emphasis on the peptide characterization, formation mechanism, physiological activity, and molecular mechanisms of action, are presented.
Collapse
Affiliation(s)
- Mengjie Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tingting Bu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jiexia Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Ling Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Songfeng Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Shanshan Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
6
|
Factors affecting levels of ferulic acid, ethyl ferulate and taste-active pyroglutamyl peptides in sake. J Biosci Bioeng 2020; 129:322-326. [DOI: 10.1016/j.jbiosc.2019.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 11/21/2022]
|
7
|
Luo Y, Kong L, Xue R, Wang W, Xia X. Bitterness in alcoholic beverages: The profiles of perception, constituents, and contributors. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Occurrence, properties and biological significance of pyroglutamyl peptides derived from different food sources. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|