1
|
Hayashi K, Kato N, Bashir K, Nomoto H, Nakayama M, Chini A, Takahashi S, Saito H, Watanabe R, Takaoka Y, Tanaka M, Nagano AJ, Seki M, Solano R, Ueda M. Subtype-selective agonists of plant hormone co-receptor COI1-JAZs identified from the stereoisomers of coronatine. Commun Biol 2023; 6:320. [PMID: 36966228 PMCID: PMC10039919 DOI: 10.1038/s42003-023-04709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
Severe genetic redundancy is particularly clear in gene families encoding plant hormone receptors, each subtype sharing redundant and specific functions. Genetic redundancy of receptor family members represents a major challenge for the functional dissection of each receptor subtype. A paradigmatic example is the perception of the hormone (+)-7-iso-jasmonoyl-L-isoleucine, perceived by several COI1-JAZ complexes; the specific role of each receptor subtype still remains elusive. Subtype-selective agonists of the receptor are valuable tools for analyzing the responses regulated by individual receptor subtypes. We constructed a stereoisomer library consisting of all stereochemical isomers of coronatine (COR), a mimic of the plant hormone (+)-7-iso-jasmonoyl-L-isoleucine, to identify subtype-selective agonists for COI1-JAZ co-receptors in Arabidopsis thaliana and Solanum lycopersicum. An agonist selective for the Arabidopsis COI1-JAZ9 co-receptor efficiently revealed that JAZ9 is not involved in most of the gene downregulation caused by COR, and the degradation of JAZ9-induced defense without inhibiting growth.
Collapse
Affiliation(s)
- Kengo Hayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Nobuki Kato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Khurram Bashir
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Department of Life Sciences, SBA School of Science and Engineering, Lahore University of Management Sciences, 54792, Lahore, Pakistan
| | - Haruna Nomoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Misuzu Nakayama
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Andrea Chini
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus University Autonoma, 28049, Madrid, Spain
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Hiroaki Saito
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, 920-1181, Japan
| | - Raku Watanabe
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yousuke Takaoka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0017, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Roberto Solano
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus University Autonoma, 28049, Madrid, Spain
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
2
|
Enomoto H. Distribution analysis of jasmonic acid-related compounds in developing Glycine max L. (soybean) seeds using mass spectrometry imaging and liquid chromatography-mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:194-203. [PMID: 34312911 DOI: 10.1002/pca.3079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Jasmonic acid (JA) and its precursors are oxylipins derived from α-linolenic acid (αLA) and hexadecatrienoic acid, and regulate seed development. However, their spatial distribution in the developing Glycine max L. (soybean) seeds has not been elucidated. OBJECTIVE To investigate the distribution of JA-related compounds in the developing soybean seeds using desorption electrospray ionisation-mass spectrometry imaging (DESI-MSI) and liquid chromatography-electrospray ionisation-mass spectrometry (LC-ESI-MS) analyses. METHODS Cryosections of developing seeds were prepared using adhesive films, and subjected to DESI-MSI analysis. Verification of the DESI-MSI ion images were performed using DESI-tandem MSI (MS/MSI), LC-ESI-MS and tandem MS (MS/MS). RESULTS In the DESI-MSI mass spectrum, peaks matching the chemical formulae of αLA, 12-oxo-phytodienoic acid (OPDA), and 3-oxo-2-(2-(Z)-pentenyl)-cyclopentane-1-octanoic acid (OPC-8:0) were detected. These compounds were mainly distributed in the seed coat, especially near the hilum. This was consistent with the quantitative results obtained by LC-ESI-MS. While, DESI-MS/MSI and LC-ESI-MS/MS suggested the presence of isomers for OPDA and OPC-8:0. The effect of isomers on the DESI-MSI ion images was small for OPDA, and considerable for OPC-8:0. CONCLUSION These results demonstrated that free αLA, OPDA, and OPC-8:0 were the abundant JA-related compounds mainly distributed in the seed coat of the developing soybeans. OPDA and OPC-8:0 might exert a biological role in the seed coat. To the best of my knowledge, this is the first report on the accumulation of OPDA and OPC-8:0 in the seed coat. The combination of DESI-MSI and LC-ESI-MS is a useful tool for distribution analysis of JA-related compounds in the developing seeds.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Japan
| |
Collapse
|
3
|
Enomoto H, Miyamoto K. Unique localization of jasmonic acid-related compounds in developing Phaseolus vulgaris L. (common bean) seeds revealed through desorption electrospray ionization-mass spectrometry imaging. PHYTOCHEMISTRY 2021; 188:112812. [PMID: 34015625 DOI: 10.1016/j.phytochem.2021.112812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Jasmonic acid (JA) and its precursors are oxylipins derived from α-linolenic acid (αLA). Presumably, they are involved in the regulation of seed embryogenesis, dormancy, and germination. However, their spatial localization in the developing Phaseolus vulgaris L. (common bean) seeds has not been fully elucidated. Therefore, desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) was performed to investigate their localization in the developing seeds. Peaks corresponding to the chemical formulae of αLA and 3-oxo-2-(2-(Z)-pentenyl)-cyclopentane-1-octanoic acid (OPC-8:0) were localized mainly in the radicle and seed coat, while that of 12-oxo-phytodienoic acid (OPDA) in the seed coat. This was consistent with the quantitative results obtained using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis. In contrast, DESI-tandem MSI (MS/MSI) and LC-ESI-MS/MS analyses showed that the effects of isomers on the DESI-MSI ion images were small for αLA and OPDA, but not for OPC-8:0. This indicated that DESI-MSI could accurately visualize αLA and OPDA, while DESI-MS/MSI was necessary to visualize OPC-8:0. The results demonstrated that free αLA and OPC-8:0 were abundant in the radicle and seed coat, while free OPDA was accumulated in the seed coat. Interestingly, the localization pattern of OPDA was similar to that of JA. In addition, compared to the concentrations of OPDA, the concentration of OPC-8:0 was lower in the seed coat and higher in the radicle. These results suggest that OPDA and/or JA play a biological role mainly in the seed coat, while OPC-8:0 is biologically active mainly in the radicle. Therefore, DESI-MSI coupled with LC-ESI-MS is a useful tool for spatial analysis of JA-related compounds in developing common bean seeds.
Collapse
Affiliation(s)
- Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan; Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan; Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, 320-8551, Japan.
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan; Division of Integrated Science and Engineering, Graduate School of Science and Engineering, Teikyo University, Utsunomiya, 320-8551, Japan
| |
Collapse
|
4
|
Inagaki H, Miyamoto K, Ando N, Murakami K, Sugisawa K, Morita S, Yumoto E, Teruya M, Uchida K, Kato N, Kaji T, Takaoka Y, Hojo Y, Shinya T, Galis I, Nozawa A, Sawasaki T, Nojiri H, Ueda M, Okada K. Deciphering OPDA Signaling Components in the Momilactone-Producing Moss Calohypnum plumiforme. FRONTIERS IN PLANT SCIENCE 2021; 12:688565. [PMID: 34135933 PMCID: PMC8201998 DOI: 10.3389/fpls.2021.688565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/03/2021] [Indexed: 05/17/2023]
Abstract
Jasmonic acid (JA) and its biologically active form jasmonoyl-L-isoleucine (JA-Ile) regulate defense responses to various environmental stresses and developmental processes in plants. JA and JA-Ile are synthesized from α-linolenic acids derived from membrane lipids via 12-oxo-phytodienoic acid (OPDA). In the presence of JA-Ile, the COI1 receptor physically interacts with JAZ repressors, leading to their degradation, resulting in the transcription of JA-responsive genes by MYC transcription factors. Although the biosynthesis of JA-Ile is conserved in vascular plants, it is not recognized by COI1 in bryophytes and is not biologically active. In the liverwort Marchantia polymorpha, dinor-OPDA (dn-OPDA), a homolog of OPDA with two fewer carbons, and its isomer dn-iso-OPDA accumulate after wounding and are recognized by COI1 to activate downstream signaling. The moss Calohypnum plumiforme produces the antimicrobial-specialized metabolites, momilactones. It has been reported that JA and JA-Ile are not detected in C. plumiforme and that OPDA, but not JA, can induce momilactone accumulation and the expression of these biosynthetic genes, suggesting that OPDA or its derivative is a biologically active molecule in C. plumiforme that induces chemical defense. In the present study, we investigated the biological functions of OPDA and its derivatives in C. plumiforme. Searching for the components potentially involving oxylipin signaling from transcriptomic and genomic data revealed that two COI1, three JAZ, and two MYC genes were present. Quantification analyses revealed that OPDA and its isomer iso-OPDA accumulated in larger amounts than dn-OPDA and dn-iso-OPDA after wounding. Moreover, exogenously applied OPDA, dn-OPDA, or dn-iso-OPDA induced the transcription of JAZ genes. These results imply that OPDA, dn-OPDA, and/or their isomers potentially act as biologically active molecules to induce the signaling downstream of COI1-JAZ. Furthermore, co-immunoprecipitation analysis showed the physical interaction between JAZs and MYCs, indicating the functional conservation of JAZs in C. plumiforme with other plants. These results suggest that COI1-JAZ-MYC mediated signaling is conserved and functional in C. plumiforme.
Collapse
Affiliation(s)
- Hideo Inagaki
- Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Japan
| | - Koji Miyamoto
- Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
- *Correspondence: Koji Miyamoto,
| | - Noriko Ando
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
| | - Kohei Murakami
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
| | - Koki Sugisawa
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
| | - Shion Morita
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Japan
| | - Miyu Teruya
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenichi Uchida
- Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Japan
| | - Nobuki Kato
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Takuya Kaji
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Yousuke Takaoka
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | | | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Kato N, Miyagawa S, Nomoto H, Nakayama M, Iwashita M, Ueda M. A scalable synthesis of (+)-coronafacic acid. Chirality 2020; 32:423-430. [PMID: 31999008 DOI: 10.1002/chir.23172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/17/2023]
Abstract
A facile, efficient, and scalable synthesis of optically pure coronafacic acid by resolution of racemic coronafacic acid obtained using an improved version of Watson's method has been developed. By optimizing the boron-mediated aldol reaction of Watson, we were able to prepare 2.1 g of racemic coronafacic acid. This was coupled with (S)-4-isopropyl-2-oxazolidinone to give a mixture of diastereomeric coronafacyl oxazolidinones, which were readily separable by silica-gel column chromatography to give 630 mg of optically pure (+)-coronafacic acid.
Collapse
Affiliation(s)
- Nobuki Kato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Saki Miyagawa
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Haruna Nomoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Misuzu Nakayama
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Makoto Iwashita
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan.,Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|