1
|
Wu P, Hu Q, Ogunfowora LA, Li Z, Marquardt AV, Savoie BM, Dou L. Toward Sustainable Polydienes. J Am Chem Soc 2025; 147:2960-2977. [PMID: 39824748 DOI: 10.1021/jacs.4c12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The sustainable management of polydiene waste represents a formidable challenge in the realm of polymer chemistry, given the extensive industrial utilization of polydienes due to their superior elastomeric properties. This comprehensive Perspective addresses the multifaceted obstacles hindering efficient recycling of polydienes, encompassing environmental concerns, technical limitations, and economic disincentives. We systematically dissect the influence of polydienes' chemical structures on their recyclability, tracing the evolution of polydiene utilization and disposal practices while assessing the current landscape of waste management strategies. Our investigation reveals the primary technical challenges associated with polydiene recycling, notably the energy-intensive nature of modification processes and the environmental detriments of prevailing disposal techniques. Furthermore, we critically evaluate existing recycling methodologies─including mechanical recycling, energy recovery, and chemical recycling─highlighting their respective merits, constraints, and environmental implications. Pioneering advancements in recycling technology, such as topochemical polymerization and computational prediction models, are spotlighted for their potential to revolutionize polydiene recycling. Looking forward, we delineate an optimistic trajectory for polydiene waste management, advocating for innovative polymerization methods, the exploration of milder recycling conditions, and the adoption of interdisciplinary approaches to bolster recycling efficiency. The Perspective culminates in a discussion on the pivotal role of policy frameworks, life cycle assessments, and economic analyses in shaping the future of polydiene recycling. Through this scholarly examination, we aim to catalyze further research and development efforts aimed at mitigating the environmental impact of polydiene waste, thereby contributing to the broader objective of sustainable chemistry.
Collapse
Affiliation(s)
- Pengfei Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Qixuan Hu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lawal A Ogunfowora
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhixu Li
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew V Marquardt
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemical and Biomolecular Engineering, The University of Notre Dame, South Bend, Indiana 46556, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Tamamura M, Gibu N, Toda T, Takenaka K, Hang DT, Huong NL, Andler R, Kasai D. Characterization of the conversion system of natural rubber to poly(3-Hydroxyalkanoate) in Piscinibacter gummiphilus strain NS21 T. N Biotechnol 2024; 84:1-8. [PMID: 39216800 DOI: 10.1016/j.nbt.2024.08.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Poly(3-hydroxyalkanoate) (PHA), a bacteria-synthesized biodegradable polyester, is a useful alternative to fossil resources, and current systems for its production rely predominantly on edible resources, raising concerns about microbial competition for nutrients. Therefore, we investigated mechanisms underlying PHA production from non-edible resources by Piscinibacter gummiphilus strain NS21T. Strain NS21T can utilize natural rubber as a carbon source on solid media and potentially produces PHA. Gas chromatography and nuclear magnetic resonance analyses of NS21T cell extracts revealed the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate) from natural rubber and glucose, respectively. Transcriptional analysis suggested that phaC is involved in PHA production. An increased PHBV accumulation rate under nitrogen-limiting conditions indicates the potential of this strain to be used as a PHBV production enhancement strategy. Furthermore, the disruption of PHA depolymerase genes resulted in enhanced PHA production, indicating the involvement of these genes in PHA degradation. These findings highlight the potential of NS21T for PHBV production from natural rubber, a non-edible resource.
Collapse
Affiliation(s)
- Masaki Tamamura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Namiko Gibu
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Tomoyuki Toda
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Katsuhiko Takenaka
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Dam Thuy Hang
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No 1 Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam
| | - Nguyen Lan Huong
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No 1 Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca, Maule, Chile
| | - Daisuke Kasai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
3
|
Cui C, Jiang M, Zhang C, Zhang N, Jin FJ, Li T, Lee HG, Jin L. Assembly strategies for rubber-degrading microbial consortia based on omics tools. Front Bioeng Biotechnol 2023; 11:1326395. [PMID: 38125306 PMCID: PMC10731047 DOI: 10.3389/fbioe.2023.1326395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Numerous microorganisms, including bacteria and fungus, have been identified as capable of degrading rubber. Rubber biodegradation is still understudied due to its high stability and the lack of well-defined pathways and efficient enzymes involved in microorganism metabolism. However, rubber products manufacture and usage cause substantial environmental issues, and present physical-chemical methods involve dangerous chemical solvents, massive energy, and trash with health hazards. Eco-friendly solutions are required in this context, and biotechnological rubber treatment offers considerable promise. The structural and functional enzymes involved in poly (cis-1,4-isoprene) rubber and their cleavage mechanisms have been extensively studied. Similarly, novel bacterial strains capable of degrading polymers have been investigated. In contrast, relatively few studies have been conducted to establish natural rubber (NR) degrading bacterial consortia based on metagenomics, considering process optimization, cost effective approaches and larger scale experiments seeking practical and realistic applications. In light of the obstacles encountered during the constructing NR-degrading consortia, this study proposes the utilization of multi-omics tools to discern the underlying mechanisms and metabolites of rubber degradation, as well as associated enzymes and effective synthesized microbial consortia. In addition, the utilization of omics tool-based methods is suggested as a primary research direction for the development of synthesized microbial consortia in the future.
Collapse
Affiliation(s)
- Chengda Cui
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Mengke Jiang
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Chengxiao Zhang
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Naxue Zhang
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Taihua Li
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Long Jin
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Amara AAAF. Natural Polymer Types and Applications. BIOMOLECULES FROM NATURAL SOURCES 2022:31-81. [DOI: 10.1002/9781119769620.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Poly-cis-isoprene Degradation by Nocardia sp. BSTN01 Isolated from Industrial Waste. Appl Biochem Biotechnol 2022; 194:3333-3350. [PMID: 35286594 DOI: 10.1007/s12010-022-03854-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
The natural and synthetic rubber (NR and SR) products are made up of poly-cis-isoprene which are estimated as one of the major solid-wastes and need to be cleared through bacterial bioremediation. The present research reports isolation and characterization of a gram-positive, non-spore forming, filamentous actinomycete Nocardia sp. BSTN01 from the waste of a rubber processing industry. We found NR- and SR-dependent growth of BSTN01 over a period of time. BSTN01 has been found to degrade NR by 55.3% and SR by 45.9% in 6 weeks. We have found an increase in the total protein of BSTN01 cells up to 623.6 and 573.9 µg/ml for NR and SR, respectively, after 6 weeks of growth in rubber-supplemented MSM medium. Scanning electron microscopy revealed adhesive growth of BSTN01 on the surface of NR and SR. Formation of aldehyde groups due to the degradation was indicated by Schiff's test and confirmed by FTIR-ATR analysis. The genome sequence of BSTN01 revealed the gene responsible for rubber degradation. The presence of lcp gene and structural analysis of the latex clearing protein further confirmed the reliability. Studies on quantification of rubber degradation capability by the isolated strain prove it to be an efficient degrader of NR and SR. This study revealed the genome sequence and structural analysis of the proteins responsible for degradation of rubber. A new fast-growing Nocardia strain can degrade both NR and SR with higher efficiency and have future potential for rubber solid-waste management either alone or in consortia.
Collapse
|
6
|
|
7
|
Basik AA, Nanthini J, Yeo TC, Sudesh K. Rubber Degrading Strains: Microtetraspora and Dactylosporangium. Polymers (Basel) 2021; 13:3524. [PMID: 34685283 PMCID: PMC8538451 DOI: 10.3390/polym13203524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 11/23/2022] Open
Abstract
Rubber composed of highly unsaturated hydrocarbons, modified through addition of chemicals and vulcanization are widely used to date. However, the usage of rubber, faces many obstacles. These elastomeric materials are difficult to be re-used and recovered, leading to high post-consumer waste and vast environmental problems. Tyres, the major rubber waste source can take up to 80 years to naturally degrade. Experiments show that the latex clearing proteins (Lcp) found in Actinobacteria were reportedly critical for the initial oxidative cleavage of poly(cis-1,4-isoprene), the major polymeric unit of rubber. Although, more than 100 rubber degrading strains have been reported, only 8 Lcp proteins isolated from Nocardia (3), Gordonia (2), Streptomyces (1), Rhodococcus (1), and Solimonas (1) have been purified and biochemically characterized. Previous studies on rubber degrading strains and Lcp enzymes, implied that they are distinct. Following this, we aim to discover additional rubber degrading strains by randomly screening 940 Actinobacterial strains isolated from various locations in Sarawak on natural rubber (NR) latex agar. A total of 18 strains from 5 genera produced clearing zones on NR latex agar, and genes encoding Lcp were identified. We report here lcp genes from Microtetraspora sp. AC03309 (lcp1 and lcp2) and Dactylosporangium sp. AC04546 (lcp1, lcp2, lcp3), together with the predicted genes related to rubber degradation. In silico analysis suggested that Microtetraspora sp. AC03309 is a distinct species closely related to Microtetraspora glauca while Dactylosporangium sp. AC04546 is a species closely related to Dactylosporangium sucinum. Genome-based characterization allowed the establishment of the strains taxonomic position and provided insights into their metabolic potential especially in biodegradation of rubber. Morphological changes and the spectrophotometric detection of aldehyde and keto groups indicated the degradation of the original material in rubber samples incubated with the strains. This confirms the strains' ability to utilize different rubber materials (fresh latex, NR product and vulcanized rubber) as the sole carbon source. Both strains exhibited different levels of biodegradation ability. Findings on tyre utilization capability by Dactylosporangium sp. AC04546 is of interest. The final aim is to find sustainable rubber treatment methods to treat rubber wastes.
Collapse
Affiliation(s)
- Ann Anni Basik
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia;
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Kuching 93250, Malaysia;
| | - Jayaram Nanthini
- Faculty of Arts & Science, School of Science & Psychology, International University of Malaya-Wales, Kuala Lumpur 50480, Malaysia;
| | - Tiong Chia Yeo
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Kuching 93250, Malaysia;
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia;
| |
Collapse
|
8
|
Soares FA, Steinbüchel A. Enzymatic and Chemical Approaches for Post-Polymerization Modifications of Diene Rubbers: Current state and Perspectives. Macromol Biosci 2021; 21:e2100261. [PMID: 34528407 DOI: 10.1002/mabi.202100261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/26/2021] [Indexed: 11/07/2022]
Abstract
Diene rubbers are polymeric materials which present elastic properties and have double bonds in the macromolecular backbone after the polymerization process. Post-polymerization modifications of rubbers can be conducted by enzymatic or chemical methods. Enzymes are environmentally friendly catalysts and with the increasing demand for rubber waste management, biodegradation and biomodifications have become hot topics of research. Some rubbers are renewable materials and are a source of organic molecules, and biodegradation can be conducted to obtain either oligomers or monomers. On the other hand, chemical modifications of rubbers by click-chemistry are important strategies for the creation and combination of new materials. In a way to expand the scope of uses to other non-traditional applications, several and effective modifications can be conducted with diene rubbers. Two groups of efficient tools, enzymatic, and chemical modifications in diene rubbers, are summarized in this review. By analyzing stereochemical and reactivity aspects, the authors also point to some applications perspectives for biodegradation products and to rational modifications of diene rubbers by combining both methodologies.
Collapse
Affiliation(s)
- Franciela Arenhart Soares
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| |
Collapse
|
9
|
Basik AA, Sanglier JJ, Yeo CT, Sudesh K. Microbial Degradation of Rubber: Actinobacteria. Polymers (Basel) 2021; 13:polym13121989. [PMID: 34204568 PMCID: PMC8235351 DOI: 10.3390/polym13121989] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/25/2023] Open
Abstract
Rubber is an essential part of our daily lives with thousands of rubber-based products being made and used. Natural rubber undergoes chemical processes and structural modifications, while synthetic rubber, mainly synthetized from petroleum by-products are difficult to degrade safely and sustainably. The most prominent group of biological rubber degraders are Actinobacteria. Rubber degrading Actinobacteria contain rubber degrading genes or rubber oxygenase known as latex clearing protein (lcp). Rubber is a polymer consisting of isoprene, each containing one double bond. The degradation of rubber first takes place when lcp enzyme cleaves the isoprene double bond, breaking them down into the sole carbon and energy source to be utilized by the bacteria. Actinobacteria grow in diverse environments, and lcp gene containing strains have been detected from various sources including soil, water, human, animal, and plant samples. This review entails the occurrence, physiology, biochemistry, and molecular characteristics of Actinobacteria with respect to its rubber degrading ability, and discusses possible technological applications based on the activity of Actinobacteria for treating rubber waste in a more environmentally responsible manner.
Collapse
Affiliation(s)
- Ann Anni Basik
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, Kuching, Sarawak 93250, Malaysia; (J.-J.S.); (C.T.Y.)
| | - Jean-Jacques Sanglier
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, Kuching, Sarawak 93250, Malaysia; (J.-J.S.); (C.T.Y.)
| | - Chia Tiong Yeo
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, Kuching, Sarawak 93250, Malaysia; (J.-J.S.); (C.T.Y.)
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence: ; Tel.: +60-4-6534367; Fax: +60-4-6565125
| |
Collapse
|
10
|
Nguyen LH, Nguyen HD, Tran PT, Nghiem TT, Nguyen TT, Dao VL, Phan TN, To AK, Hatamoto M, Yamaguchi T, Kasai D, Fukuda M. Biodegradation of natural rubber and deproteinized natural rubber by enrichment bacterial consortia. Biodegradation 2020; 31:303-317. [PMID: 32914250 DOI: 10.1007/s10532-020-09911-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/05/2020] [Indexed: 11/28/2022]
Abstract
This study examined the biodegradation of natural rubber (NR) and deproteinized natural rubber (DPNR) by bacterial consortia enriched from a rubber-processing factory's waste in Vietnam. The results reveal the degradation in both NR and DPNR, and the DPNR was degraded easier than NR. The highest weight loss of 48.37% was obtained in the fourth enrichment consortium with DPNR, while 35.39% was obtained in the fifth enrichment consortium with NR after 14 days of incubation. Nitrogen content and fatty acid content determined by Kjeldahl method and fourier transform infrared spectroscopy (FTIR), respectively, were decreased significantly after being incubated with the consortia. Structure of degraded rubber film analyzed by nuclear magnetic resonance spectroscopy showed the presence of aldehyde group, a sign of rubber degradation. Bacterial cells tightly adhering and embedding into NR and DPNR films were observed by scanning electron microscopy. There were differences in the bacterial composition of the consortia with NR and DPNR, which were determined by metagenomic analysis using 16S rRNA gene sequencing. The phyla Bacteroidetes and Proteobacteria may play a role in the degradation of non-isoprene compounds such as protein or lipid, while the phylum Actinobacteria plays a crucial role in the degradation of rubber hydrocarbon in all consortia.
Collapse
Affiliation(s)
- Lan Huong Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, No 1, Dai Co Viet street, Hanoi, Vietnam.
| | - Hoang Dung Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, No 1, Dai Co Viet street, Hanoi, Vietnam
| | - P Thao Tran
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Thi Thuong Nghiem
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Thi Thanh Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, No 1, Dai Co Viet street, Hanoi, Vietnam
| | - Viet Linh Dao
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, No 1, Dai Co Viet street, Hanoi, Vietnam.,Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Trung Nghia Phan
- School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Anh Kim To
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, No 1, Dai Co Viet street, Hanoi, Vietnam
| | - Masashi Hatamoto
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Masao Fukuda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan.,Department of Biological Chemistry, Chubu University, Kasugai, Japan
| |
Collapse
|