1
|
Zhou YY, Zhang X, Pan LY, Zhang WW, Chen F, Hu SS, Jiang HY. Fecal microbiota in pediatric depression and its relation to bowel habits. J Psychiatr Res 2022; 150:113-121. [PMID: 35367655 DOI: 10.1016/j.jpsychires.2022.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022]
Abstract
Although gut microbiota dysbiosis has been observed in the fecal samples of depressive adult patients, the detailed structure and composition of microbiota in pediatric depression remain unclear. To enhance our understanding of gut microbiota structure in depressive children, as well as the relationship between gut microbiota and bowel habits, we performed 16S rRNA sequencing to evaluate the gut microbial population in a cohort of 171 children (101 depressive patients and 70 controls) aged 12-18 years. Further analysis consisting of 30 drug-naive patients and 23 controls was performed to validate the results. Compared to controls, we found markedly decreased microbial richness and diversity, a distinct metagenomic composition with reduced short-chain fatty acid-producing bacteria (associated with healthy status), and overgrowth of bacteria such as Escherichia-Shigella and Flavonifractor in pediatric depression. Further analyses limited to drug-naive patients found similar results. Notably, we also observed that several taxa may be involved in the pathogenesis of disordered bowel habits in pediatric depression. Our findings suggest could inform future pediatric depression interventions specifically targeting the bacteria associated with bowel movements.
Collapse
Affiliation(s)
- Yuan-Yue Zhou
- Department of Medical Psychology, The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan, China; Department of Child and Adolescent Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
| | - Xue Zhang
- Department of Clinical Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, China
| | - Li-Ya Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen-Wu Zhang
- Department of Child and Adolescent Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Fang Chen
- Department of Child and Adolescent Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Sha-Sha Hu
- Department of Child and Adolescent Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Hai-Yin Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zeng F, Zhao C, Li N, Gao X, Pan YY, Liu B, Pang J. Effects of Alkaloid-Rich Extracts Obtained from Grifola frondosa on Gut Microbiota and Glucose Homeostasis in Rats. Food Funct 2022; 13:2729-2742. [DOI: 10.1039/d1fo04062f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grifola frondosa (GF), also known as maitake (a type of mushroom), has been widely used as a food item and it exhibits various health-beneficial hypoglycemic activities. Rats fed with a...
Collapse
|
3
|
Sears B, Saha AK. Dietary Control of Inflammation and Resolution. Front Nutr 2021; 8:709435. [PMID: 34447777 PMCID: PMC8382877 DOI: 10.3389/fnut.2021.709435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
The healing of any injury requires a dynamic balance of initiation and resolution of inflammation. This hypothesis-generating review presents an overview of the various nutrients that can act as signaling agents to modify the metabolic responses essential for the optimal healing of injury-induced inflammation. In this hypothesis-generating review, we describe a defined nutritional program consisting of an integrated interaction of a calorie-restricted anti-inflammatory diet coupled with adequate levels of omega-3 fatty acids and sufficient levels of dietary polyphenols that can be used in clinical trials to treat conditions associated with insulin resistance. Each dietary intervention works in an orchestrated systems-based approach to reduce, resolve, and repair the tissue damage caused by any inflammation-inducing injury. The orchestration of these specific nutrients and their signaling metabolites to facilitate healing is termed the Resolution Response. The final stage of the Resolution Response is the activation of intracellular 5' adenosine monophosphate-activated protein kinase (AMPK), which is necessary to repair tissue damaged by the initial injury-induced inflammation. The dietary optimization of the Resolution Response can be personalized to the individual by using standard blood markers. Once each of those markers is in their appropriate ranges, activation of intracellular AMPK will be facilitated. Finally, we outline how the resulting activation of AMPK will affect a diverse number of other intercellular signaling systems leading to an extended healthspan.
Collapse
Affiliation(s)
- Barry Sears
- Inflammation Research Foundation, Peabody, MA, United States
| | | |
Collapse
|
4
|
Adesina PA, Isayama K, Sitolo GC, Yamamoto Y, Suzuki T. Propionate and Dietary Fermentable Fibers Upregulate Intestinal Heat Shock protein70 in Intestinal Caco-2 Cells and Mouse Colon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8460-8470. [PMID: 34291640 DOI: 10.1021/acs.jafc.1c03036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Short-chain fatty acids (SCFAs), including propionate, are major metabolites of intestinal microorganisms and play an essential role in regulating intestinal epithelial integrity. Heat shock proteins (HSPs) promote cellular homeostasis under physiological and stressed conditions. This study aimed to investigate the regulation of intestinal HSP70 by propionate in human intestinal Caco-2 cells and the colon of fermentable dietary fiber (DF)-fed mice and germ-free mice. The results showed that propionate increased Hspa1a (HSP70 mRNA) level in Caco-2 cells, upregulated HSP70 protein, and phosphorylation of heat shock factor 1; however, the latter two were reduced by mitogen-activated protein kinases and the mechanistic target of rapamycin inhibitors. Feeding fermentable DFs, such as guar gum (GG) and partially hydrolyzed GG, increased both cecal SCFAs and colonic HSP70 expression, both of which were reduced in germ-free mice than in specific-pathogen-free mice. Collectively, the propionate-induced HSP70 expression was shown to be possibly involved in intestinal homeostasis.
Collapse
Affiliation(s)
- Precious Adedayo Adesina
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Kana Isayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Gertrude Cynthia Sitolo
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
- Department of Physics and Biochemical Sciences, Malawi University of Business and Applied Sciences, Private Bag 303, Chichiri Blantyre 3, Malawi
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Takuya Suzuki
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|