1
|
Nowak-Jary J, Machnicka B. Comprehensive Analysis of the Potential Toxicity of Magnetic Iron Oxide Nanoparticles for Medical Applications: Cellular Mechanisms and Systemic Effects. Int J Mol Sci 2024; 25:12013. [PMID: 39596080 PMCID: PMC11594039 DOI: 10.3390/ijms252212013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Owing to recent advancements in nanotechnology, magnetic iron oxide nanoparticles (MNPs), particularly magnetite (Fe3O4) and maghemite (γ-Fe2O3), are currently widely employed in the field of medicine. These MNPs, characterized by their large specific surface area, potential for diverse functionalization, and magnetic properties, have found application in various medical domains, including tumor imaging (MRI), radiolabelling, internal radiotherapy, hyperthermia, gene therapy, drug delivery, and theranostics. However, ensuring the non-toxicity of MNPs when employed in medical practices is paramount. Thus, ongoing research endeavors are essential to comprehensively understand and address potential toxicological implications associated with their usage. This review aims to present the latest research and findings on assessing the potential toxicity of magnetic nanoparticles. It meticulously delineates the primary mechanisms of MNP toxicity at the cellular level, encompassing oxidative stress, genotoxic effects, disruption of the cytoskeleton, cell membrane perturbation, alterations in the cell cycle, dysregulation of gene expression, inflammatory response, disturbance in ion homeostasis, and interference with cell migration and mobility. Furthermore, the review expounds upon the potential impact of MNPs on various organs and systems, including the brain and nervous system, heart and circulatory system, liver, spleen, lymph nodes, skin, urinary, and reproductive systems.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516 Zielona Gora, Poland;
| | | |
Collapse
|
2
|
Rezaei N, Zarkesh I, Fotouhi A, Alikhani HK, Hassan M, Vosough M. Chitosan-coated nanoparticles in innovative cancer bio-medicine. Drug Dev Res 2024; 85:e22189. [PMID: 38678548 DOI: 10.1002/ddr.22189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
In the recent decade, nanoparticles (NPs) have had enormous implications in cancer biomedicine, including research, diagnosis, and therapy. However, their broad application still faces obstacles due to some practical limitations and requires further development. Recently, there has been more interest in the coated class of nanoparticles to address those challenges. Chitosan-coated NPs are simple to produce, biodegradable, biocompatible, exhibit antibacterial activity, and have less cytotoxicity. This study provides an updated and comprehensive overview of the application of chitosan-coated NPs as a promising class of NPs in cancer biomedicine. Additionally, we discussed chitosan-coated lipid, metal, and polymer-based nanoparticles in biomedical applications. Furthermore, different coating methods and production/characterization procedures were reviewed. Moreover, the biological and physicochemical advantages of chitosan-coated NPs, including facilitated controlled release, greater physicochemical stability, improved cell/tissue interaction, and enhanced bioavailability of medications, were highlighted. Finally, the prospects of chitosan-coated NPs in cancer biomedicine were discussed.
Collapse
Affiliation(s)
- Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ibrahim Zarkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Fotouhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnique), Tehran, Iran
| | - Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
3
|
Sadeghzadeh F, Nasiraei Haghighi H, Ghiyamati M, Hajizadenadaf F, Homayouni Tabrizi M. In vitro and in vivo study on the anticancer effects of anethole-loaded bovine serum albumin nanoparticles surface decorated with chitosan and folic acid. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
AbstractAnethole (Ant) is a herbal compound with unique properties, which is limited in its clinical use due to its low solubility in aqueous solutions. Therefore, in this study, albumin nanocarrier modified with chitosan-folate was used to transfer Ant to cancer cells and its anticancer effects were evaluated. First, Ant was loaded on albumin nanoparticles by desolvation method and then the surface of nanoparticles was covered with chitosan bound to folate. After characterization, the amount of Ant loading in nanoparticles was measured by the absorption method and then its toxicity effects on breast cancer cell lines, colon, and normal cells were evaluated by the MTT method. The real-time QPCR method was used to investigate the expression changes of apoptosis-related genes in the treated cells compared to the control cells, and finally, the antitumor effects of nanoparticles were evaluated in the mouse model carrying breast cancer. The results of this investigation showed the presence of nanoparticles with dimensions of 252 nm, a dispersion index of 0.28 mV, and a surface charge of 27.14 mV, which are trapped in about 88% of ATL. The toxicity effect of nanoparticles was shown on breast, colon, and normal cancer cells, respectively. In addition, the examination of the gene profile under investigation showed an increase in the expression of BAX and caspase-3 and -9 along with a decrease in the expression of the Bcl-2 gene, which confirms the activation of the internal pathway of apoptosis. The decrease in the volume of tumors and the presence of apoptotic areas in the tissue sections confirmed the antitumor effects of nanoparticles in the in vivo model. The inhibition percentage of free Ant and nanoparticles with a concentration of 25 and 50 mg/kg/tumor volume was reported as 36.9%, 56.6%, and 64.9%, respectively, during 15 days of treatment. These results showed the effectiveness of the formulation in inhibiting cancer cells both in vitro and in vivo.
Collapse
|
4
|
In Vitro Studies of Pegylated Magnetite Nanoparticles in a Cellular Model of Viral Oncogenesis: Initial Studies to Evaluate Their Potential as a Future Theranostic Tool. Pharmaceutics 2023; 15:pharmaceutics15020488. [PMID: 36839809 PMCID: PMC9967771 DOI: 10.3390/pharmaceutics15020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Magnetic nanosystems represent promising alternatives to the traditional diagnostic and treatment procedures available for different pathologies. In this work, a series of biological tests are proposed, aiming to validate a magnetic nanoplatform for Kaposi's sarcoma treatment. The selected nanosystems were polyethylene glycol-coated iron oxide nanoparticles (MAG.PEG), which were prepared by the hydrothermal method. Physicochemical characterization was performed to verify their suitable physicochemical properties to be administered in vivo. Exhaustive biological assays were conducted, aiming to validate this platform in a specific biomedical field related to viral oncogenesis diseases. As a first step, the MAG.PEG cytotoxicity was evaluated in a cellular model of Kaposi's sarcoma. By phase contrast microscopy, it was found that cell morphology remained unchanged regardless of the nanoparticles' concentration (1-150 µg mL-1). The results, arising from the crystal violet technique, revealed that the proliferation was also unaffected. In addition, cell viability analysis by MTS and neutral red assays revealed a significant increase in metabolic and lysosomal activity at high concentrations of MAG.PEG (100-150 µg mL-1). Moreover, an increase in ROS levels was observed at the highest concentration of MAG.PEG. Second, the iron quantification assays performed by Prussian blue staining showed that MAG.PEG cellular accumulation is dose dependent. Furthermore, the presence of vesicles containing MAG.PEG inside the cells was confirmed by TEM. Finally, the MAG.PEG steering was achieved using a static magnetic field generated by a moderate power magnet. In conclusion, MAG.PEG at a moderate concentration would be a suitable drug carrier for Kaposi's sarcoma treatment, avoiding adverse effects on normal tissues. The data included in this contribution appear as the first stage in proposing this platform as a suitable future theranostic to improve Kaposi's sarcoma therapy.
Collapse
|
5
|
Zakhireh S, Barar J, Adibkia K, Beygi-Khosrowshahi Y, Fathi M, Omidain H, Omidi Y. Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration. Top Curr Chem (Cham) 2022; 380:13. [PMID: 35149879 DOI: 10.1007/s41061-022-00364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Captivating achievements in developing advanced hybrid biostructures through integrating natural biopolymers with inorganic materials (e.g., metals and metalloids) have paved the way towards the application of bioactive organometallic scaffolds (OMSs) in tissue engineering and regenerative medicine (TERM). Of various biopolymers, chitosan (CS) has been used widely for the development of bioactive OMSs, in large part due to its unique characteristics (e.g., biocompatibility, biodegradability, surface chemistry, and functionalization potential). In integration with inorganic elements, CS has been used to engineer advanced biomimetic matrices to accommodate both embedded cells and drug molecules and serve as scaffolds in TERM. The use of the CS-based OMSs is envisioned to provide a new pragmatic potential in TERM and even in precision medicine. In this review, we aim to elaborate on recent achievements in a variety of CS/metal, CS/metalloid hybrid scaffolds, and discuss their applications in TERM. We also provide comprehensive insights into the formulation, surface modification, characterization, biocompatibility, and cytotoxicity of different types of CS-based OMSs.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Omidain
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| |
Collapse
|
6
|
Baati T, Njim L, Jaafoura S, Aouane A, Neffati F, Ben Fradj N, Kerkeni A, Hammami M, Hosni K. Assessment of Pharmacokinetics, Toxicity, and Biodistribution of a High Dose of Titanate Nanotubes Following Intravenous Injection in Mice: A Promising Nanosystem of Medical Interest. ACS OMEGA 2021; 6:21872-21883. [PMID: 34497882 PMCID: PMC8412905 DOI: 10.1021/acsomega.1c01733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/02/2021] [Indexed: 05/10/2023]
Abstract
Titanate nanotubes (TiNTs) produced by the static hydrothermal process present a promising nanosystem for nanomedicine. However, the behavior of these nanotubes in vivo is not yet clarified. In this work, for the first time, we investigated the toxicity of these materials, their pharmacokinetic profile, and their biodistribution in mice. A high dose of TiNTs (45 mg/kg) was intravenously injected in mice and monitored from 6 h to 45 days. The histological examination of organs and the analysis of liver and kidney function markers and then the inflammatory response were in agreement with a long-term innocuity of these nanomaterials. The parameters of pharmacokinetics revealed the rapid clarification of TiNTs from the bloodstream after 6 h of the intravenous injection which then mainly accumulated in the liver and spleen, and their degradation and clearance in these tissues were relatively slow (>4 weeks). Interestingly, an important property of these materials is their slow dissolution under the lysosome acid environment, rendering them biodegradable. It is noteworthy that TiNTs were directly eliminated in urine and bile ducts without obvious toxicity in mice. Altogether, all these typical in vivo tests studying the TiNT pharmacokinetics, toxicity, and biodistribution are supporting the use of these biocompatible nanomaterials in the biomedical field, especially as a nanocarrier-based drug delivery system.
Collapse
Affiliation(s)
- Tarek Baati
- Laboratoire
des Substances Naturelles, Institut National
de Recherche et d’Analyse Physico-Chimique, Biotechpole Sidi Thabet 2020, Tunisie
| | - Leila Njim
- Service
d’Anatomie Pathologique, CHU de Monastir, Monastir 5000, Tunisie
| | - Sabra Jaafoura
- Laboratoire
des Substances Naturelles, Institut National
de Recherche et d’Analyse Physico-Chimique, Biotechpole Sidi Thabet 2020, Tunisie
- Laboratoire
ABCDF (LR12ES10), Faculté de Médecine Dentaire, Université de Monastir, Monastir 5000, Tunisie
| | - Aicha Aouane
- Centre
de Microscopie Electronique, Université
Aix-Marseille, IBDML
Campus Luminy, Marseille 3007, France
| | - Fadoua Neffati
- Laboratoire
de Biochimie et de Toxicologie, CHU de Monastir, Monastir 5000, Tunisie
| | - Nadia Ben Fradj
- Laboratoire
de Pharmacologie, Faculté de Médecine
de Monastir, Monastir 5000, Tunisie
| | - Abdelhamid Kerkeni
- Laboratoire
de Biophysique, Faculté de Médecine
de Monastir, Monastir 5000, Tunisie
| | - Mohamed Hammami
- Laboratoire
des Substances Naturelles, Institut National
de Recherche et d’Analyse Physico-Chimique, Biotechpole Sidi Thabet 2020, Tunisie
| | - Karim Hosni
- Laboratoire
des Substances Naturelles, Institut National
de Recherche et d’Analyse Physico-Chimique, Biotechpole Sidi Thabet 2020, Tunisie
| |
Collapse
|
7
|
Sharifi-Rad J, Quispe C, Butnariu M, Rotariu LS, Sytar O, Sestito S, Rapposelli S, Akram M, Iqbal M, Krishna A, Kumar NVA, Braga SS, Cardoso SM, Jafernik K, Ekiert H, Cruz-Martins N, Szopa A, Villagran M, Mardones L, Martorell M, Docea AO, Calina D. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int 2021; 21:318. [PMID: 34167552 PMCID: PMC8223345 DOI: 10.1186/s12935-021-02025-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The study describes the current state of knowledge on nanotechnology and its utilization in medicine. The focus in this manuscript was on the properties, usage safety, and potentially valuable applications of chitosan-based nanomaterials. Chitosan nanoparticles have high importance in nanomedicine, biomedical engineering, discovery and development of new drugs. The manuscript reviewed the new studies regarding the use of chitosan-based nanoparticles for creating new release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity of drugs. Nowadays, effective cancer treatment is a global problem, and recent advances in nanomedicine are of great importance. Special attention was put on the application of chitosan nanoparticles in developing new system for anticancer drug delivery. Pre-clinical and clinical studies support the use of chitosan-based nanoparticles in nanomedicine. This manuscript overviews the last progresses regarding the utilization, stability, and bioavailability of drug nanoencapsulation with chitosan and their safety.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Monica Butnariu
- Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Lia Sanda Rotariu
- Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv, 01033 Ukraine
| | - Simona Sestito
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, 94976 Slovak Republic
- Department of Pharmacy, University of Pisa, Via bonanno 6, 56126 Pisa, Italy
| | - Simona Rapposelli
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, 94976 Slovak Republic
- Department of Pharmacy, University of Pisa, Via bonanno 6, 56126 Pisa, Italy
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, GC University Faisalabad, Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Akash Krishna
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104 India
| | | | - Susana S. Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Karolina Jafernik
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal
| | - Agnieszka Szopa
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Marcelo Villagran
- Biomedical Science Research Laboratory and Scientific-Technological Center for the Sustainable Development of the Coastline, Universidad Catolica de La Santisima Concepcion, Concepcion, Chile
| | - Lorena Mardones
- Biomedical Science Research Laboratory and Scientific-Technological Center for the Sustainable Development of the Coastline, Universidad Catolica de La Santisima Concepcion, Concepcion, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
8
|
Tejada G, Barrera MG, García P, Sortino M, Lamas MC, Lassalle V, Alvarez V, Leonardi D. Nanoparticulated Systems Based on Natural Polymers Loaded with Miconazole Nitrate and Lidocaine for the Treatment of Topical Candidiasis. AAPS PharmSciTech 2020; 21:278. [PMID: 33033939 DOI: 10.1208/s12249-020-01826-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
People with weakened immune systems are at risk of developing candidiasis which is a fungal infection caused by several species of Candida genus. In this work, polymeric nanoparticles containing miconazole nitrate and the anesthetic lidocaine clorhydrate were developed. Miconazole was chosen as a typical drug to treat buccopharyngeal candidiasis whereas lidocaine may be useful in the management of the pain burning, and pruritus caused by the infection. Nanoparticles were synthesized using chitosan and gelatin at different ratios ranging from 10:90 to 90:10. The nano-systems presented nanometric size (between 80 and 300 nm in water; with polydispersion index ranging from 0.120 to 0.596), and positive Z potential (between 20.11 and 37.12 mV). The determined encapsulation efficiency ranges from 65 to 99% or 34 to 91% for miconazole nitrate and lidocaine clorhydrate, respectively. X-ray diffraction and DSC analysis suggested that both drugs were in amorphous state in the nanoparticles. Finally, the systems fitted best the Korsmeyer-Peppas model showing that the release from the nanoparticles was through diffusion allowing a sustained release of both drugs and prolonged the activity of miconazole nitrate over time against Candida albicans for at least 24 h.
Collapse
|
9
|
Frank L, Onzi G, Morawski A, Pohlmann A, Guterres S, Contri R. Chitosan as a coating material for nanoparticles intended for biomedical applications. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104459] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Aussel A, Boiziau C, L'Azou B, Siadous R, Delmond S, Montembault A, David L, Bordenave L, Thébaud NB. Cell and tissue responses at the interface with a chitosan hydrogel intended for vascular applications: in vitro and in vivo exploration. ACTA ACUST UNITED AC 2019; 14:025009. [PMID: 30609413 DOI: 10.1088/1748-605x/aafbf0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIMS The need for small caliber vessels to treat cardiovascular diseases has grown. However, synthetic polymers perform poorly in small-diameter applications. Chitosan hydrogels can provide a novel biological scaffold for vascular engineering. The goal of this study was to explore host cell and tissue behavior at the interface with chitosan-based scaffolds in vitro and in vivo. METHODS AND RESULTS in vitro, we assessed the ability of endothelial cells lining chitosan hydrogels to produce tissue factor (TF), thrombomodulin (TM) and nitric oxide. We showed that endothelial cells behave as a native endothelium since under stimulation, TF and TM expression increased and decreased, respectively. Endothelial cells seeded on chitosan produced nitric oxide, but no change was observed under stimulation. After in vivo subcutaneous implantation of chitosan hydrogels in rats, macrophage activation phenotypes, playing a crucial role in biomaterial/tissue, were explored by immunohistochemistry. Our results suggested a balance between pro- and anti-inflammatory signals since we observed an inflammatory response in favor of macrophage M2 phenotype. CONCLUSION in vitro exploration of endothelial cell response at the interface with chitosan hydrogel showed a functional endothelium and in vivo exploration of tissue response revealed a biointegration of chitosan hydrogels.
Collapse
Affiliation(s)
- Audrey Aussel
- Univ. Bordeaux, BIOTIS, F-33000 Bordeaux, France. CHU Bordeaux, Pôle Odontologie et Santé Buccale, F-33000 Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mohamed MA, Abd-Elsalam KA. Magnetic Nanoparticles: A Unique Gene Delivery System in Plant Science. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019:95-108. [DOI: 10.1007/978-3-030-16439-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Montiel Schneider MG, Martin MJ, Coral DF, Muraca D, Gentili C, Fernández van Raap M, Lassalle VL. Selective contrast agents with potential to the earlier detection of tumors: Insights on synthetic pathways, physicochemical properties and performance in MRI assays. Colloids Surf B Biointerfaces 2018; 170:470-478. [DOI: 10.1016/j.colsurfb.2018.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
|
13
|
Azcona P, López-Corral I, Lassalle V. Fabrication of folic acid magnetic nanotheranostics: An insight on the formation mechanism, physicochemical properties and stability in simulated physiological media. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|