1
|
Krishna VS, Subashini V, Hariharan A, Chidambaram D, Raaju A, Gopichandran N, Nanthanalaxmi MP, Lekhavadhani S, Shanmugavadivu A, Selvamurugan N. Role of crosslinkers in advancing chitosan-based biocomposite scaffolds for bone tissue engineering: A comprehensive review. Int J Biol Macromol 2024; 283:137625. [PMID: 39547606 DOI: 10.1016/j.ijbiomac.2024.137625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Bone tissue engineering (BTE) aims to repair and regenerate damaged bone tissue by combining cells, scaffolds, and signaling molecules. Various macromolecules, including natural polymers like chitosan (CS), collagen, hyaluronic acid, and alginate, as well as synthetic polymers such as polyethylene glycol and polylactic acid, are used in scaffold fabrication. Among these, CS holds significant potential in BTE due to its biocompatibility, biodegradability, and other features. The inherent mechanical weaknesses of CS-based scaffolds require the implementation of crosslinking strategies to improve their stability and overall performance. Physical crosslinkers like ultra-violet irradiation and freeze-thaw cycles are biocompatible but offer limited mechanical strength. Chemical crosslinkers like glutaraldehyde significantly improve mechanical strength, but they may induce cytotoxicity. We briefly outline here the critical role of physical and chemical crosslinkers in improving the physicochemical properties, mechanical strength, biocompatibility, and biological functions of CS-based scaffolds, including effective bone regeneration. The influence of crosslinking on the CS-based scaffolds' bioactivity, including the controlled release of bioactive molecules, is also discussed. A thorough understanding of crosslinker chemistry and application in CS-based scaffolds is essential for advancing bone regeneration therapies.
Collapse
Affiliation(s)
- Venkatasubramanian Sai Krishna
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Velan Subashini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Adithya Hariharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Deekshaa Chidambaram
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Adityaa Raaju
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nikthesh Gopichandran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Muthuvaira Prasath Nanthanalaxmi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Li Q, Xiu P, Yang X, Wang L, Liu L, Song Y. A comparison of anterior reconstruction of spinal defect using nano-hydroxyapatite/polyamide 66 cage and autologous iliac bone for thoracolumbar tuberculosis: a stepwise propensity score matching analysis. Front Bioeng Biotechnol 2024; 12:1376596. [PMID: 38798951 PMCID: PMC11116778 DOI: 10.3389/fbioe.2024.1376596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose Previous studies have confirmed the advantages and disadvantages of autogenous iliac bone and nano-hydroxyapatite/polyamide 66 (n-HA/PA66) cage. However, there is no conclusive comparison between the efficacy of the two implant materials in spinal tuberculosis bone graft fusion. The aim of this study was to analyze the mid-to long-term clinical and radiologic outcomes between n-HA/PA66 cage and autogenous iliac bone for anterior reconstruction application of spinal defect for thoracolumbar tuberculosis. Methods We retrospectively reviewed all patients who underwent anterior debridement and strut graft with n-HA/PA66 cage or iliac bone combined with anterior instrumentations between June 2009 and June 2014. One-to-one nearest-neighbor propensity score matching (PSM) was used to match patients who underwent n-HA/PA66 cage to those who underwent iliac bone. Clinical outcomes were assessed using the Japanese Orthopaedic Association (JOA) and visual analogue score (VAS). Radiographic evaluations included cage subsidence and segmental angle. Results At the end of the PSM analysis, 16 patients from n-HA/PA66 cage group were matched to 16 patients in Iliac bone group. The C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) values in the n-HA/PA66 group decreased significantly from 33.19 ± 10.89 and 46.63 ± 15.65 preoperatively, to 6.56 ± 2.48 and 9.31 ± 3.34 at the final follow-up, respectively (p < 0.001). There were no significant differences in the CRP and ESR values between the two groups at the final follow-up. The VAS and JOA scores in the iliac bone and n-HA/PA66 group were significantly improved at the 3-month follow-up postoperatively (both p < 0.001). Then, improvements of VAS and JOA scores continue long at final follow-up. However, there were no significant differences in the VAS and JOA scores at any time point between the two groups (p > 0.05). Although the segmental angle (SA) significantly increased after surgery in both groups, there was no significant difference at any time point after surgery (p > 0.05). There were no significant differences in the cage subsidence and fusion time between the two groups. Conclusion Overall, our data suggest that the n-HA/PA66 cage outcomes are comparable to those in the autogenous iliac bone, with a similar high fusion rate as autogenous iliac bone.
Collapse
Affiliation(s)
| | | | | | - Lei Wang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | | | - Yueming Song
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Hamed A, Orabi A, Salem H, Ismaiel D, Saad G, Abdelhamid I, Elwahy A, Elsabee M. An effective uranium removal using diversified synthesized cross-linked chitosan bis-aldehyde Schiff base derivatives from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106790-106811. [PMID: 36334198 PMCID: PMC10611627 DOI: 10.1007/s11356-022-23856-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Three new cross-linked chitosan derivatives were yielded through intensification of chitosan with diverse types of bis-aldehydes. The prepared cross-linked chitosan was characterized by FTIR, 1H NMR, XRD, and TGA techniques. TGA indicated an improvement in thermal stability of the cross-linked chitosan compared with pure chitosan. Batch adsorption experiments showed that the three novel cross-linked chitosan bis-aldehyde derivatives possessed good adsorption capacity against U(VI) in the order of BFPA > BFB > BODB (adsorption capacity of the three adsorbents for U(VI) reaches 142, 124, and 114 mg/g respectively) and the adsorption isotherm and kinetic were well described by the Langmuir and the pseudo-second-order kinetic model, respectively. In addition, the prepared cross-linked chitosan bis-aldehyde derivatives were examined as U(VI) catcher from waste solutions.
Collapse
Affiliation(s)
- Amira Hamed
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ahmed Orabi
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt.
| | - Hend Salem
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt
| | - Doaa Ismaiel
- Nuclear Materials Authority, El-Maadi, P.O. Box 530, Cairo, Egypt
| | - Gamal Saad
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ismail Abdelhamid
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ahmed Elwahy
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Maher Elsabee
- Chemistry Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| |
Collapse
|
4
|
Chitosan Schiff bases-based polyelectrolyte complexes with graphene quantum dots and their prospective biomedical applications. Int J Biol Macromol 2022; 208:1029-1045. [PMID: 35378157 DOI: 10.1016/j.ijbiomac.2022.03.199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
Chitosan (Cs) bis-aldehyde Schiff base derivatives were synthesized by condensation of Cs with three bis-aldehydes namely; butane-1,4-diyl bis(4-formylbenzoate), N,N'-(butane-1,4-diyl)bis(2-(4-formylphenoxy)acetamide) and 4,4'-(butane-1,4-diylbis(oxy))dibenzaldehyde. The prepared Cs derivatives were blended with carboxymethyl chitosan(CMC) and graphene quantum dots (GQDs) to produce semi-IPNs polyelectrolyte complexes (PECs). and characterized with respect to their molecular structure and physio-chemical properties. The antibacterial activity against H. pylori (and in vitro Inosine 5'-monophosphate dehydrogenase IMPDH inhibitory assay) was evaluated. Additionally, a preliminary in vitro assessment for wound healing was performed against PECs in which wound closure percentages, and rates were investigated indicating an accelerated wound healing compared with untreated cells. The PEC based on Schiff base PEC containing amide linkage showed the highest wound healing ability. A minimal inhibitory concentration (MIC) was obtained for the PEC sample containing Cs Schiff base derived from 4,4'-(butane-1, 4-diylbis(oxy))dibenzaldehyde at a dose of 0.98 μg/ml inhibiting H. pylori growth by 100%. Additionally, the selected above-mentioned compound was selected to test its inhibitory activity against the HpIMPDH enzyme in addition to its selectivity towards the hIMPDH2 enzyme and was found to have promising activity against the HpIMPDH enzyme with IC50 value of 0.65 μM, and to be safer and less active against the hIMPDH2 enzyme with IC50 > 10 μM, reflecting its selectivity.
Collapse
|
5
|
Sánchez JM, Carratalá JV, Serna N, Unzueta U, Nolan V, Sánchez-Chardi A, Voltà-Durán E, López-Laguna H, Ferrer-Miralles N, Villaverde A, Vazquez E. The Poly-Histidine Tag H6 Mediates Structural and Functional Properties of Disintegrating, Protein-Releasing Inclusion Bodies. Pharmaceutics 2022; 14:pharmaceutics14030602. [PMID: 35335976 PMCID: PMC8955739 DOI: 10.3390/pharmaceutics14030602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
The coordination between histidine-rich peptides and divalent cations supports the formation of nano- and micro-scale protein biomaterials, including toxic and non-toxic functional amyloids, which can be adapted as drug delivery systems. Among them, inclusion bodies (IBs) formed in recombinant bacteria have shown promise as protein depots for time-sustained protein release. We have demonstrated here that the hexahistidine (H6) tag, fused to recombinant proteins, impacts both on the formation of bacterial IBs and on the conformation of the IB-forming protein, which shows a higher content of cross-beta intermolecular interactions in H6-tagged versions. Additionally, the addition of EDTA during the spontaneous disintegration of isolated IBs largely affects the protein leakage rate, again protein release being stimulated in His-tagged materials. This event depends on the number of His residues but irrespective of the location of the tag in the protein, as it occurs in either C-tagged or N-tagged proteins. The architectonic role of H6 in the formation of bacterial IBs, probably through coordination with divalent cations, offers an easy approach to manipulate protein leakage and to tailor the applicability of this material as a secretory amyloidal depot in different biomedical interfaces. In addition, the findings also offer a model to finely investigate, in a simple set-up, the mechanics of protein release from functional secretory amyloids.
Collapse
Affiliation(s)
- Julieta María Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba X 5016GCA, Argentina;
| | - José Vicente Carratalá
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ugutz Unzueta
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, 08025 Barcelona, Spain
| | - Verónica Nolan
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC. Av. Velez Sarsfield 1611, Córdoba X 5016GCA, Argentina;
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (A.V.); (E.V.)
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain; (J.M.S.); (J.V.C.); (N.S.); (E.V.-D.); (H.L.-L.); (N.F.-M.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Plaça Cívica s/n, Bellaterra, 08193 Barcelona, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (A.V.); (E.V.)
| |
Collapse
|
6
|
Li YL, Zhao WK, Zhang J, Xiang C, Chen Q, Yan C, Jiang K. In vitro and in vivo evaluations of nano-hydroxyapatite/polyamide 66/yttria-stabilized zirconia as a novel bioactive material for bone screws: Biocompatibility and bioactivity. J Biomater Appl 2020; 35:108-122. [PMID: 32248734 DOI: 10.1177/0885328220916618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zirconia and its derivatives have been receiving increased levels of attention with regard to their potential application in bone tissue engineering. These materials are of particular interest because of their excellent characteristics, such as superior biological and mechanical properties. In this study, yttria-stabilized tetragonal zirconia (YTZ)-reinforced nanohydroxyapatite/polyamide 66 (nHA/PA66) bone screws were prepared. The biocompatibility and bioactivity of nHA/PA66/YTZ were evaluated in vitro using MC3T3-E1 cells. Biocompatibility and bioactivity experiments (cell counting kit-8 tests, cell immunofluorescence analysis, and polymerase chain reaction) showed that nHA/PA66/YTZ could facilitate the biological functions of MC3T3-E1 cells. The attachment, proliferation, spreading, and expression of genes associated with osteogenesis (collagen 1, osteopontin, and osteocalcin) in cells cultured with the nHA/PA66/YTZ composite were all superior compared with the control groups (P < 0.05). In addition, nHA/PA66/YTZ bone screws were implanted into the femoral condyles of rabbits, and titanium screws were employed as a control group; postoperative histology and blood analysis revealed no obvious damage to the liver, kidneys, or any other major organs in either of the experimental groups. Moreover, nHA/PA66/YTZ screws resulted in significantly better bone-implant contact interfaces and enhanced formation of trabecular bone (P < 0.05); these characteristics were markedly better than those in the group that received titanium screws. These observations indicate that YTZ-reinforced nHA/PA66 composites have significant potential for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Yu-Ling Li
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong City, China
| | - Wei-Kang Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong City, China
| | - Chao Xiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong City, China
| | - Qian Chen
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong City, China
| | - Caiping Yan
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong City, China
| | - Ke Jiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong City, China
| |
Collapse
|
7
|
Ritz U, Gerke R, Götz H, Stein S, Rommens PM. A New Bone Substitute Developed from 3D-Prints of Polylactide (PLA) Loaded with Collagen I: An In Vitro Study. Int J Mol Sci 2017; 18:E2569. [PMID: 29186036 PMCID: PMC5751172 DOI: 10.3390/ijms18122569] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 01/04/2023] Open
Abstract
Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D) printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA) are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived factor (SDF-1) release from cages filled with collagen was analyzed and the effect on endothelial cells tested. This study confirms the biocompatibility of PLA and demonstrates an endotoxin contamination clearly below the FDA (Food and Drug Administration) limit. Cells of various cell types (osteoblasts, osteoblast-like cells, fibroblasts and endothelial cells) grow, spread and proliferate on PLA-printed discs. PLA cages loaded with SDF-1 collagen display a steady SDF-1 release, support cell growth of endothelial cells and induce neo-vessel formation. These results demonstrate the potential for PLA scaffolds printed with an inexpensive desktop printer in medical applications, for example, in bone tissue engineering.
Collapse
Affiliation(s)
- Ulrike Ritz
- Department of Orthopaedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Rebekka Gerke
- Department of Orthopaedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Hermann Götz
- Platform for Biomaterial Research, University Medical Center, BiomaTiCS, Johannes Gutenberg University, 55131 Mainz, Germany.
| | - Stefan Stein
- Georg-Speyer-Haus-Institute for Tumor Biology and Experimental Therapy, 60659 Frankfurt, Germany.
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany.
| |
Collapse
|