1
|
Nan X, Wu Y, Xu L, Yang L, Cui Y. A novel glass chip based lateral flow immunoassay of albumin. Biomed Microdevices 2025; 27:15. [PMID: 40138001 DOI: 10.1007/s10544-025-00744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
Lateral flow immunoassays typically rely on optical tests conducted on paper strips. However, the 3D matrix of paper embedded with optical nanoparticles often limits detection sensitivity and the ability of detection instruments to capture signals. This study introduces a novel approach using a glass chip-based lateral flow immunoassay, with albumin as a typical biomarker for detection, enabling the presence of the signal on a flat surface. Compared with traditional paper-based immunoassay, glass-based lateral flow immunoassay has achieved a uniform distribution pattern for albumin detection, lowered the limit of detection from 100 ng/mL to 1 ng/mL, and reduced detection time through an improved liquid mobility system. The glass-based method also shortens the detection time by 28.5% to 147.8 s compared to the traditional method. This research presents a new methodology for lateral flow immunoassays that can be applied to a wide range of biomarkers, with potential benefits for various medical and environmental applications.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
- Peking University Institute of Nephrology, Beijing, 100034, P.R. China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, P.R. China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, P.R. China
| | - Yiyang Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
- Peking University Institute of Nephrology, Beijing, 100034, P.R. China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, P.R. China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, P.R. China
| | - Lingyi Xu
- Renal Division, Peking University First Hospital, Beijing, 100034, P.R. China
- Peking University Institute of Nephrology, Beijing, 100034, P.R. China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, P.R. China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, P.R. China
| | - Li Yang
- Renal Division, Peking University First Hospital, Beijing, 100034, P.R. China.
- Peking University Institute of Nephrology, Beijing, 100034, P.R. China.
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, P.R. China.
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, P.R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China.
- Peking University Institute of Nephrology, Beijing, 100034, P.R. China.
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, 100034, P.R. China.
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, P.R. China.
| |
Collapse
|
2
|
Bankoğlu Yola B, Özdemir N, Yola ML. A Review Study on Molecularly Imprinting Surface Plasmon Resonance Sensors for Food Analysis. BIOSENSORS 2024; 14:571. [PMID: 39727836 DOI: 10.3390/bios14120571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
Surface plasmon resonance (SPR) sensors have emerged as a powerful tool in biosensing applications due to their ability to provide sensitive and real-time detection of chemical and biological analytes. This review focuses on the development and application of molecularly imprinted polymer (MIP)-based SPR sensors for food analysis. By combining the high selectivity of molecular imprinting techniques with the sensitivity of SPR, these sensors offer significant advantages in detecting food contaminants and other target molecules. The article covers the basic principles of SPR, the role of MIPs in sensor specificity, recent advancements in this sensor development, and food applications. Furthermore, the potential for these sensors to contribute to food safety and quality control was explored, showcasing their adaptability to complex food matrices. The review concluded the future directions and challenges of SPR-MIP sensors in food analysis, emphasizing their promise in achieving high-throughput, cost-effective, and portable sensing solutions.
Collapse
Affiliation(s)
- Bahar Bankoğlu Yola
- Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Gaziantep 27000, Turkey
| | - Neslihan Özdemir
- Department of Machinery and Metal Technologies, Merzifon Vocational School, Amasya University, Amasya 05300, Turkey
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey
| |
Collapse
|
3
|
Jahanban-Esfahlan A, Amarowicz R. Molecularly imprinted polymers for sensing/depleting human serum albumin (HSA): A critical review of recent advances and current challenges. Int J Biol Macromol 2024; 266:131132. [PMID: 38531529 DOI: 10.1016/j.ijbiomac.2024.131132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Human serum albumin (HSA) is an essential biomacromolecule in the blood circulatory system because it carries numerous molecules, including fatty acids (FAs), bilirubin, metal ions, hormones, and different pharmaceuticals, and plays a significant role in regulating blood osmotic pressure. Fluctuations in HSA levels in human biofluids, particularly urine and serum, are associated with several disorders, such as elevated blood pressure, diabetes mellitus (DM), liver dysfunction, and a wide range of renal diseases. Thus, the ability to quickly and accurately measure HSA levels is important for the rapid identification of these disorders in human populations. Molecularly imprinted polymers (MIPs), well known as artificial antibodies (Abs), have been extensively used for the quantitative detection of small molecules and macromolecules, especially HSA, in recent decades. This review highlights major challenges and recent developments in the application of MIPs to detect HSA in artificial and real samples. The fabrication and application of various MIPs for the depletion of HSA are also discussed, as well as different MIP preparation approaches and strategies for overcoming obstacles that hinder the development of MIPs with high efficiency and recognition capability for HSA determination/depletion.
Collapse
Affiliation(s)
- Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.
| | - Ryszard Amarowicz
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Street Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
4
|
TATAR N, AKGÖNÜLLÜ S, YAVUZ H, DENİZLİ A. Cibacron Blue F3GA ligand dye-based magnetic silica particles for the albumin purification. Turk J Chem 2023; 47:1125-1137. [PMID: 38173736 PMCID: PMC10760827 DOI: 10.55730/1300-0527.3599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/31/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Dye-ligand affinity chromatography is among the increasingly popular affinity chromatography based on molecular recognition for the purification of albumin. This study focuses on the binding of Cibacron Blue F3GA ligand dye with magnetic silica particles and purification by separation. Mono-disperse silica particles with bimodal pore size distribution were employed as a high-performance adsorbent for human serum albumin (HSA) protein purification under equilibrium conditions. The synthesized ligand-dye affinity based magnetic silica particles were characterized by electron spin resonance, Fourier-transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer, elemental analysis, and dispersive X-ray analysis. The HSA purification performance of the proposed material in the presence of a magnetic field was relatively investigated using magnetic-based particles with similar morphologies. The maximum adsorption capacity for HSA in an artificial plasma medium was defined as 48.6 mg/g magnetic silica particle. By using the designed magnetic silica particles, 1.0 M NaCl solution was successfully utilized for obtaining quantitative desorption with HSA. However, continued HSA purification performances of magnetic-based particles were significantly lower concerning the ligand-dye magnetic silica particles. The purity of the removed albumin was about 97%. The magnetic silica particles could be utilized many times without decreasing their protein adsorption capacities remarkably.
Collapse
Affiliation(s)
- Nurhak TATAR
- Institute of Nuclear Sciences, Hacettepe University, Ankara,
Turkiye
| | - Semra AKGÖNÜLLÜ
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara,
Turkiye
| | - Handan YAVUZ
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara,
Turkiye
| | - Adil DENİZLİ
- Division of Biochemistry, Department of Chemistry, Hacettepe University, Ankara,
Turkiye
| |
Collapse
|
5
|
Shama N, Aşır S, Göktürk I, Yılmaz F, Türkmen D, Denizli A. Electrochemical Detection of Cortisol by Silver Nanoparticle-Modified Molecularly Imprinted Polymer-Coated Pencil Graphite Electrodes. ACS OMEGA 2023; 8:29202-29212. [PMID: 37599971 PMCID: PMC10433476 DOI: 10.1021/acsomega.3c02472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
The sensitive cortisol detection by an electrochemical sensor based on silver nanoparticle-doped molecularly imprinted polymer was successfully improved. This study describes the method development for cortisol detection in both aqueous solution and biological samples using molecularly imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-histidine methyl ester)-coated pencil graphite electrodes modified with silver nanoparticles (AgNPs) by differential pulse voltammetry (DPV). The cortisol-imprinted pencil graphite electrode (PGE) has a large surface area because of doped AgNPs with enhanced electroactivity. The prepared molecularly imprinted polymer was characterized by scanning electron microscopy. The DPV response of the synthesized electrode with outstanding electrical conductivity was clarified. Cortisol-imprinted polymer-coated PGEs (MIP), cortisol-imprinted polymer-coated PGEs with AgNPs (MIP@AgNPs), and nonimprinted polymer-coated PGEs with AgNPs (NIP@AgNPs) were evaluated for sensitive and selective detection of cortisol in aqueous solution. Five different cortisol concentrations (0.395, 0.791, 1.32, 2.64, and 3.96 nM) were applied to the MIP@AgNPs, and signal responses were detected by the DPV with a regression coefficient (R2) value of 0.9951. The modified electrode showed good electrocatalytic activity toward cortisol for the linear concentration range from 0.395 to 3.96 nM, and a low limit of detection was recorded as 0.214 nM. The results indicate that the MIP@AgNPs sensor has great potential for sensitive and selective cortisol determination in biological samples.
Collapse
Affiliation(s)
- Nemah
Abu Shama
- Department
of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University, Beer Sheva 84105, Israel
| | - Süleyman Aşır
- Department
of Materials Science and Nanotechnology Engineering, Near East University, Mersin 10 Turkey, Nicosia 99138, North Cyprus
| | - Ilgım Göktürk
- Department
of Chemistry, Hacettepe University Ankara, 06800, Turkey
| | - Fatma Yılmaz
- Department
of Chemistry and Chemical Processing Technologies, Bolu Abant Izzet Baysal University, Bolu 14030, Turkey
| | - Deniz Türkmen
- Department
of Chemistry, Hacettepe University Ankara, 06800, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University Ankara, 06800, Turkey
| |
Collapse
|
6
|
Akgönüllü S, Kılıç S, Esen C, Denizli A. Molecularly Imprinted Polymer-Based Sensors for Protein Detection. Polymers (Basel) 2023; 15:629. [PMID: 36771930 PMCID: PMC9919373 DOI: 10.3390/polym15030629] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The accurate detection of biological substances such as proteins has always been a hot topic in scientific research. Biomimetic sensors seek to imitate sensitive and selective mechanisms of biological systems and integrate these traits into applicable sensing platforms. Molecular imprinting technology has been extensively practiced in many domains, where it can produce various molecular recognition materials with specific recognition capabilities. Molecularly imprinted polymers (MIPs), dubbed plastic antibodies, are artificial receptors with high-affinity binding sites for a particular molecule or compound. MIPs for protein recognition are expected to have high affinity via numerous interactions between polymer matrices and multiple functional groups of the target protein. This critical review briefly describes recent advances in the synthesis, characterization, and application of MIP-based sensor platforms used to detect proteins.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Seçkin Kılıç
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Cem Esen
- Department of Chemistry, Faculty of Science, Aydın Adnan Menderes University, 09010 Aydın, Turkey
| | - Adil Denizli
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
7
|
Recent Advances in Quartz Crystal Microbalance Biosensors Based on the Molecular Imprinting Technique for Disease-Related Biomarkers. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The molecular imprinting technique is a quickly developing field of interest regarding the synthesis of artificial recognition elements that enable the specific determination of target molecule/analyte from a matrix. Recently, these smart materials can be successfully applied to biomolecule detection in biomimetic biosensors. These biosensors contain a biorecognition element (a bioreceptor) and a transducer, like their biosensor analogs. Here, the basic difference is that molecular imprinting-based biosensors use a synthetic recognition element. Molecular imprinting polymers used as the artificial recognition elements in biosensor platforms are complementary in shape, size, specific binding sites, and functionality to their template analytes. Recent progress in biomolecular recognition has supplied extra diagnostic and treatment methods for various diseases. Cost-effective, more robust, and high-throughput assays are needed for monitoring biomarkers in clinical settings. Quartz crystal microbalance (QCM) biosensors are promising tools for the real-time and quick detection of biomolecules in the past two decades A quick, simple-to-use, and cheap biomarkers detection technology based on biosensors has been developed. This critical review presents current applications in molecular imprinting-based quartz crystal microbalance biosensors for the quantification of biomarkers for disease monitoring and diagnostic results.
Collapse
|
8
|
Akgönüllü S, Koyun S, Yavuz H, Erdem A, Denizli A. Preparation of Surface Plasmon Resonance Aptasensor for Human Activated Protein C Sensing. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2393:37-56. [PMID: 34837173 DOI: 10.1007/978-1-0716-1803-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleic acid aptamers are an emerging class of artificial ligands and have recently gained attention in several areas. Here we report the design of a surface plasmon resonance (SPR) aptasensor for highly sensitive and selective sensing of human activated protein C (APC). First, DNA aptamer (DNA-Apt) specific for APC is complexed with N-methacryloyl-L-cysteine (MAC) monomer. Then, 2-hydroxyethyl methacrylate (HEMA) and cyanamide are mixed with the DNA-Apt/MAC complex. The SPR aptasensor is characterized by atomic force microscopy, ellipsometry, and contact angle measurements. Selectivity of SPR aptasensor is carried out in the presence of myoglobin (Myb), hemoglobin (Hb), and bovine serum albumin (BSA). Limit of detection (LOD) and limit of quantification (LOQ) values are 1.5 ng mL-1 and 5.2 ng mL-1, respectively. DNA-Apt SPR aptasensor performance for APC detection is also examined in artificial plasma.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Seda Koyun
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Handan Yavuz
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Arzum Erdem
- Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
9
|
Development of an enhanced immunoassay based on protein nanoparticles displaying an IgG-binding domain and luciferase. Anal Bioanal Chem 2022; 414:2079-2088. [PMID: 35037082 DOI: 10.1007/s00216-021-03842-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/01/2022]
Abstract
Detection of small amounts of target molecules with high sensitivity is important for the diagnosis of many diseases, including cancers, and is particularly important to detect early stages of disease. Here, we report the development of a temperature-responsive fusion protein (ELP-DCN) comprised of an elastin-like polypeptide (ELP), poly-aspartic acid (D), antibody-binding domain C (C), and NanoLuc luciferase (N). ELP-DCN proteins form nanoparticles above a certain threshold temperature that display an antibody-binding domain and NanoLuc luciferase on their surface. ELP-DCN nanoparticles can be applied for enhancement of immunoassay systems because they provide more antibody-binding sites and an increased number of luciferase molecules, resulting in an increase in assay signal. Here, we report the detection of human serum albumin (HSA) as a model protein using anti-HSA and ELP-DCN proteins. Upon formation of ELP-DCN nanoparticles, the detection limit improved tenfold compared to the monomeric form of ELP-DCN.
Collapse
|
10
|
Akgönüllü S, Bakhshpour M, Pişkin AK, Denizli A. Microfluidic Systems for Cancer Diagnosis and Applications. MICROMACHINES 2021; 12:mi12111349. [PMID: 34832761 PMCID: PMC8619454 DOI: 10.3390/mi12111349] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Microfluidic devices have led to novel biological advances through the improvement of micro systems that can mimic and measure. Microsystems easily handle sub-microliter volumes, obviously with guidance presumably through laminated fluid flows. Microfluidic systems have production methods that do not need expert engineering, away from a centralized laboratory, and can implement basic and point of care analysis, and this has attracted attention to their widespread dissemination and adaptation to specific biological issues. The general use of microfluidic tools in clinical settings can be seen in pregnancy tests and diabetic control, but recently microfluidic platforms have become a key novel technology for cancer diagnostics. Cancer is a heterogeneous group of diseases that needs a multimodal paradigm to diagnose, manage, and treat. Using advanced technologies can enable this, providing better diagnosis and treatment for cancer patients. Microfluidic tools have evolved as a promising tool in the field of cancer such as detection of a single cancer cell, liquid biopsy, drug screening modeling angiogenesis, and metastasis detection. This review summarizes the need for the low-abundant blood and serum cancer diagnosis with microfluidic tools and the progress that has been followed to develop integrated microfluidic platforms for this application in the last few years.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
| | - Monireh Bakhshpour
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
| | - Ayşe Kevser Pişkin
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara 06230, Turkey;
| | - Adil Denizli
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara 06800, Turkey; (S.A.); (M.B.)
- Correspondence:
| |
Collapse
|
11
|
Ion-imprinted-based nanochelators for iron(III) removal from synthetic gastric fluid. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Türkmen D, Özkaya Türkmen M, Akgönüllü S, Denizli A. Development of ion imprinted based magnetic nanoparticles for selective removal of arsenic (III) and arsenic (V) from wastewater. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1956972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Deniz Türkmen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | | | - Semra Akgönüllü
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Magnetic-graphene oxide based molecular imprinted polymers for selective extraction of glycoprotein at physiological pH. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123384] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 2020; 219:121219. [DOI: 10.1016/j.talanta.2020.121219] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
|
15
|
Mauriz E. Low-Fouling Substrates for Plasmonic Sensing of Circulating Biomarkers in Biological Fluids. BIOSENSORS-BASEL 2020; 10:bios10060063. [PMID: 32531908 PMCID: PMC7345924 DOI: 10.3390/bios10060063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022]
Abstract
The monitoring of biomarkers in body fluids provides valuable prognostic information regarding disease onset and progression. Most biosensing approaches use noninvasive screening tools and are conducted in order to improve early clinical diagnosis. However, biofouling of the sensing surface may disturb the quantification of circulating biomarkers in complex biological fluids. Thus, there is a great need for antifouling interfaces to be designed in order to reduce nonspecific adsorption and prevent inactivation of biological receptors and loss of sensitivity. To address these limitations and enable their application in clinical practice, a variety of plasmonic platforms have been recently developed for biomarker analysis in easily accessible biological fluids. This review presents an overview of the latest advances in the design of antifouling strategies for the detection of clinically relevant biomarkers on the basis of the characteristics of biological samples. The impact of nanoplasmonic biosensors as point-of-care devices has been examined for a wide range of biomarkers associated with cancer, inflammatory, infectious and neurodegenerative diseases. Clinical applications in readily obtainable biofluids such as blood, saliva, urine, tears and cerebrospinal and synovial fluids, covering almost the whole range of plasmonic applications, from surface plasmon resonance (SPR) to surface-enhanced Raman scattering (SERS), are also discussed.
Collapse
Affiliation(s)
- Elba Mauriz
- Department of Nursing and Physiotherapy, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain;
- Institute of Food Science and Technology (ICTAL), La Serna 58, 24007 León, Spain
| |
Collapse
|
16
|
Rahtuvanoğlu A, Akgönüllü S, Karacan S, Denizli A. Biomimetic Nanoparticles Based Surface Plasmon Resonance Biosensors for Histamine Detection in Foods. ChemistrySelect 2020. [DOI: 10.1002/slct.202000440] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ayşegül Rahtuvanoğlu
- Department of Chemical Engineering, Faculty of EngineeringAnkara University Ankara 06100 Turkey
| | - Semra Akgönüllü
- Depatment of Chemistry, Faculty of ScienceHacettepe University Ankara 06800 Turkey
| | - Süleyman Karacan
- Department of Chemical Engineering, Faculty of EngineeringAnkara University Ankara 06100 Turkey
| | - Adil Denizli
- Depatment of Chemistry, Faculty of ScienceHacettepe University Ankara 06800 Turkey
| |
Collapse
|
17
|
Özgür E, Saylan Y, Bereli N, Türkmen D, Denizli A. Molecularly imprinted polymer integrated plasmonic nanosensor for cocaine detection. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1211-1222. [PMID: 32238027 DOI: 10.1080/09205063.2020.1751524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A molecularly imprinted polymeric nanofilm was prepared for cocaine detection and applied to plasmonic nanosensor for real-time kinetic, selectivity and reusability analyses. The sensing polymeric surface was fabricated by synthesizing a selective and specific nanofilm on the gold plasmonic nanosensor surface. After characterization experiments with atomic force microscopy, ellipsometer, and contact angle measurements, the kinetic studies of cocaine detection in aqueous solutions in a wide concentration range between 0.2-100 μg/mL were applied to plasmonic nanosensor system at 24 °C with a low limit of detection (0.1 μg/L) and quantification values (0.3 μg/L) and the results showed that this molecularly imprinted polymeric nanofilm integrated plasmonic nanosensor is providing a model for the fastest, most accurate and most precise identification of the cocaine molecule which constitutes a large part of the workload of forensic laboratories.
Collapse
Affiliation(s)
- Erdoğan Özgür
- Department of Chemistry, Hacettepe University, Ankara, Turkey.,Advanced Technologies Application and Research Center, Hacettepe University, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nilay Bereli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Deniz Türkmen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
Rapid and sensitive detection of synthetic cannabinoids JWH-018, JWH-073 and their metabolites using molecularly imprinted polymer-coated QCM nanosensor in artificial saliva. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104454] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|