1
|
Li X, Li L, Wang D, Zhang J, Yi K, Su Y, Luo J, Deng X, Deng F. Fabrication of polymeric microspheres for biomedical applications. MATERIALS HORIZONS 2024; 11:2820-2855. [PMID: 38567423 DOI: 10.1039/d3mh01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.
Collapse
Affiliation(s)
- Xuebing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Luohuizi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Jun Zhang
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Kangfeng Yi
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Yucai Su
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610054, P. R. China.
| |
Collapse
|
2
|
Hu S, Zhao Q, Niu Y, Luo C, Zhang Z, He B, Hao H. Synthesis, characterization, thermal stability, and in vitro and in vivo degradation study of polycaprolactone and polyglycolide block copolymers. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:302-314. [PMID: 36039407 DOI: 10.1080/09205063.2022.2119731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biodegradable polymer materials are attractive in various biomedical applications. Herein, we report a block aliphatic copolymer, polycaprolactone-block-polyglycolide (PCL-b-PGA, denoted as PCLGA), and explored the polymer composition effect on the thermal and degradation behaviors. Three copolymers with different PCL/PGA weight ratios were obtained by a two-step ring opening polymerization. The chemical structures and compositions of copolymers were studied by NMR and FT-IR. The thermal behaviors were investigated by DSC and TGA. The in vitro degradation in phosphate buffer saline and in vivo degradation as an implant in rats were evaluated and the hygroscopic rate and polymer weight loss changes were monitored in an eight-week period. PCLGA with a higher PCL composition showed a slower degradation in vitro and in vivo. These PCLGAs with different degradation rates could be used as biomedical implants for potential application in drug delivery and tissue repair.
Collapse
Affiliation(s)
- Shaodong Hu
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, China
| | - Quan Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yapeng Niu
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, China
| | - Canxuan Luo
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, China
| | - Zhixuan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Hui Hao
- Technology Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, China
| |
Collapse
|
3
|
Feng Z, Su X, Wang T, Sun X, Yang H, Guo S. The Role of Microsphere Structures in Bottom-Up Bone Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020321. [PMID: 36839645 PMCID: PMC9964570 DOI: 10.3390/pharmaceutics15020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Bone defects have caused immense healthcare concerns and economic burdens throughout the world. Traditional autologous allogeneic bone grafts have many drawbacks, so the emergence of bone tissue engineering brings new hope. Bone tissue engineering is an interdisciplinary biomedical engineering method that involves scaffold materials, seed cells, and "growth factors". However, the traditional construction approach is not flexible and is unable to adapt to the specific shape of the defect, causing the cells inside the bone to be unable to receive adequate nourishment. Therefore, a simple but effective solution using the "bottom-up" method is proposed. Microspheres are structures with diameters ranging from 1 to 1000 µm that can be used as supports for cell growth, either in the form of a scaffold or in the form of a drug delivery system. Herein, we address a variety of strategies for the production of microspheres, the classification of raw materials, and drug loading, as well as analyze new strategies for the use of microspheres in bone tissue engineering. We also consider new perspectives and possible directions for future development.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xin Su
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China
- Correspondence: (X.S.); (S.G.)
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China;
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
- Correspondence: (X.S.); (S.G.)
| |
Collapse
|
4
|
Syazwani Athirah Sazuan N, Irwan Zubairi S, Hanisah Mohd N, Daik R. Synthesising Injectable Molecular Self-Curing Polymer from Monomer Derived from Lignocellulosic Oil Palm Empty Fruit Bunch Biomass: A Review on Treating Osteoarthritis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
5
|
Milborne B, Murrell L, Cardillo-Zallo I, Titman J, Briggs L, Scotchford C, Thompson A, Layfield R, Ahmed I. Developing Porous Ortho- and Pyrophosphate-Containing Glass Microspheres; Structural and Cytocompatibility Characterisation. Bioengineering (Basel) 2022; 9:611. [PMID: 36354522 PMCID: PMC9687370 DOI: 10.3390/bioengineering9110611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 04/04/2024] Open
Abstract
Phosphate-based glasses (PBGs) are promising materials for bone repair and regeneration as they can be formulated to be compositionally similar to the inorganic components of bone. Alterations to the PBG formulation can be used to tailor their degradation rates and subsequent release of biotherapeutic ions to induce cellular responses, such as osteogenesis. In this work, novel invert-PBGs in the series xP2O5·(56 - x)CaO·24MgO·20Na2O (mol%), where x is 40, 35, 32.5 and 30 were formulated to contain pyro (Q1) and orthophosphate (Q0) species. These PBGs were processed into highly porous microspheres (PMS) via flame spheroidisation, with ~68% to 75% porosity levels. Compositional and structural analysis using EDX and 31P-MAS NMR revealed that significant depolymerisation occurred with reducing phosphate content which increased further when PBGs were processed into PMS. A decrease from 50% to 0% in Q2 species and an increase from 6% to 35% in Q0 species was observed for the PMS when the phosphate content decreased from 40 to 30 mol%. Ion release studies also revealed up to a four-fold decrease in cations and an eight-fold decrease in phosphate anions released with decreasing phosphate content. In vitro bioactivity studies revealed that the orthophosphate-rich PMS had favourable bioactivity responses after 28 days of immersion in simulated body fluid (SBF). Indirect and direct cell culture studies confirmed that the PMS were cytocompatible and supported cell growth and proliferation over 7 days of culture. The P30 PMS with ~65% pyro and ~35% ortho phosphate content revealed the most favourable properties and is suggested to be highly suitable for bone repair and regeneration, especially for orthobiologic applications owing to their highly porous morphology.
Collapse
Affiliation(s)
- Ben Milborne
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lauren Murrell
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Jeremy Titman
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Louise Briggs
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Colin Scotchford
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alexander Thompson
- Biodiscovery Institute, Division of Cancer and Stem Cells, University of Nottingham, Nottingham NG7 2RD, UK
| | - Robert Layfield
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
6
|
Dexamethasone loaded injectable, self-healing hydrogel microspheresbased on UPy-functionalized Gelatin/ZnHAp physical network promotes bone regeneration. Int J Pharm 2022; 626:122196. [PMID: 36115467 DOI: 10.1016/j.ijpharm.2022.122196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
Abstract
Biopolymer-based injectable hydrogels provide great potential as bone tissue engineering (BTE) scaffolds on account of biocompatibility, and pore interconnectivity that enables delivery of cells and/or signaling molecules for bone repair. Recently, Gelatin hydrogels based on H-bonds were considered in response to concerns around the chemical crosslinking agents. In this study, a self-healing gelatin hydrogel with remarkable compressive and self-healing properties was prepared via formation of quadruple hydrogen bonds between ureidopyrimidinon functional groups, which were substituted on NH2 groups of gelatin(GelUPy). Degree of substitution controls properties of the resulting hydrogel from a shape- memory hydrogel (100% substitution), to a hydrogel (about 80%), to this self-healing hydrogel (about 40%). We report a strategy that adopts an emulsion synthesis approach to delivery of dexamethasone and Ca/Zn ions from injectable self-healing GelUPy hydrogel (GelUPy-ZnHApUPy-DEX), to induce osteogenic differentiation of adipose-derived stem cells, in vitro, and enhance bone regeneration in a cranial bone defect in a rat model. We show that key properties of the composite hydrogels, including mechanical properties, and release behavior of DEX are a match to the requirements of BTE. Overall, our results demonstrate that this self-healing gelatin approach is a promising strategy to enhance bone regeneration through a minimally invasive procedure.
Collapse
|
7
|
Ogueri KS, Ogueri KS, McClinton A, Kan HM, Ude CC, Barajaa MA, Allcock HR, Laurencin CT. In Vivo Evaluation of the Regenerative Capability of Glycylglycine Ethyl Ester-Substituted Polyphosphazene and Poly(lactic- co-glycolic acid) Blends: A Rabbit Critical-Sized Bone Defect Model. ACS Biomater Sci Eng 2021; 7:1564-1572. [PMID: 33792283 PMCID: PMC8084594 DOI: 10.1021/acsbiomaterials.0c01650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In an effort to understand the biological capability of polyphosphazene-based polymers, three-dimensional biomimetic bone scaffolds were fabricated using the blends of poly[(glycine ethylglycinato)75(phenylphenoxy)25]phosphazene (PNGEGPhPh) and poly(lactic-co-glycolic acid) (PLGA), and an in vivo evaluation was performed in a rabbit critical-sized bone defect model. The matrices constructed from PNGEGPhPh-PLGA blends were surgically implanted into 15 mm critical-sized radial defects of the rabbits as structural templates for bone tissue regeneration. PLGA, which is the most commonly used synthetic bone graft substitute, was used as a control in this study. Radiological and histological analyses demonstrated that PNGEGPhPh-PLGA blends exhibited favorable in vivo biocompatibility and osteoconductivity, as the newly designed matrices allowed new bone formation to occur without adverse immunoreactions. The X-ray images of the blends showed higher levels of radiodensity than that of the pristine PLGA, indicating higher rates of new bone formation and regeneration. Micro-computed tomography quantification revealed that new bone volume fractions were significantly higher for the PNGEGPhPh-PLGA blends than for the PLGA controls after 4 weeks. The new bone volume increased linearly with increasing time points, with the new tissues observed throughout the defect area for the blend and only at the implant site's extremes for the PLGA control. Histologically, the polyphosphazene system appeared to show tissue responses and bone ingrowths superior to PLGA. By the end of the study, the defects with PNGEGPhPh-PLGA scaffolds exhibited evidence of effective bone tissue ingrowth and minimal inflammatory responses. Thus, polyphosphazene-containing biomaterials have excellent translational potential for use in bone regenerative engineering applications.
Collapse
Affiliation(s)
- Kenneth S. Ogueri
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kennedy S. Ogueri
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Aneesah McClinton
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Chinedu C. Ude
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Mohammed A. Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06296, USA
| | - Harry R. Allcock
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cato T. Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06296, USA
| |
Collapse
|
8
|
Abstract
The major objectives of this study were to investigate the effects of silver nanoparticles– gelatin (AgNPs) on the physical and chemical properties of gelatin/alginate (Gel/Alg) scaffolds and the bone-promoting effect of AgNP–Gel/Alg scaffolds. Gel/Alg scaffolds consisting of 0 μM, 200 μM, 400 μM, and 600 μM AgNPs were prepared. SEM was used to evaluate the physical properties of the scaffolds. A CCK-8 assay was performed to determine the cell proliferation activity, and Micro-CT and histological analysis were used to assess the osteogenic effect. The pore size, porosity, and the water absorption and degradation rates of AgNP–Gel/Alg scaffolds were found to be increased compared with those of Gel/Alg scaffolds (control group). CCK-8 showed that cell proliferation activity in the 200 μM group was significantly higher than that in the control group. Micro-CT analysis showed that there was more new bone around AgNP–Gel/Alg than the control group, and the amount of bone formation in the 200 μM group was significantly higher than that in the other groups. Masson staining showed that numerous collagen fibers had proliferated around the AgNP–Gel/Alg scaffold and tended to thicken over time. AgNP–Gel/Alg scaffolds promoted the repair of skull defects in New Zealand rabbits and exerted a marked osteogenic effect in vivo. The 200 μM AgNP–Gel/Alg scaffold was shown to be more suitable for bone tissue engineering materials.
Collapse
|