1
|
Sun J, Chen C, Zhang B, Yao C, Zhang Y. Advances in 3D-printed scaffold technologies for bone defect repair: materials, biomechanics, and clinical prospects. Biomed Eng Online 2025; 24:51. [PMID: 40301861 PMCID: PMC12042599 DOI: 10.1186/s12938-025-01381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
The treatment of large bone defects remains a significant clinical challenge due to the limitations of current grafting techniques, including donor site morbidity, restricted availability, and suboptimal integration. Recent advances in 3D bioprinting technology have enabled the fabrication of structurally and functionally optimized scaffolds that closely mimic native bone tissue architecture. This review comprehensively examines the latest developments in 3D-printed scaffolds for bone regeneration, focusing on three critical aspects: (1) material selection and composite design encompassing metallic; (2) structural optimization with hierarchical porosity (macro/micro/nano-scale) and biomechanical properties tailored; (3) biological functionalization through growth factor delivery, cell seeding strategies and surface modifications. We critically analyze scaffold performance metrics from different research applications, while discussing current translational barriers, including vascular network establishment, mechanical stability under load-bearing conditions, and manufacturing scalability. The review concludes with a forward-looking perspective on innovative approaches such as 4D dynamic scaffolds, smart biomaterials with stimuli-responsive properties, and the integration of artificial intelligence for patient-specific design optimization. These technological advancements collectively offer unprecedented opportunities to address unmet clinical needs in complex bone reconstruction.
Collapse
Affiliation(s)
- Jie Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Cao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Bo Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chen Yao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Yafeng Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
2
|
Song P, Zhou D, Wang F, Li G, Bai L, Su J. Programmable biomaterials for bone regeneration. Mater Today Bio 2024; 29:101296. [PMID: 39469314 PMCID: PMC11513843 DOI: 10.1016/j.mtbio.2024.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Programmable biomaterials are distinguished by their ability to adjust properties and functions on demand, in a periodic, reversible, or sequential manner. This contrasts with traditional biomaterials, which undergo irreversible, uncontrolled changes. This review synthesizes key advances in programmable biomaterials, examining their design principles, functionalities and applications in bone regeneration. It charts the transition from traditional to programmable biomaterials, emphasizing their enhanced precision, safety and control, which are critical from clinical and biosafety standpoints. We then classify programmable biomaterials into six types: dynamic nucleic acid-based biomaterials, electrically responsive biomaterials, bioactive scaffolds with programmable properties, nanomaterials for targeted bone regeneration, surface-engineered implants for sequential regeneration and stimuli-responsive release materials. Each category is analyzed for its structural properties and its impact on bone tissue engineering. Finally, the review further concludes by highlighting the challenges faced by programmable biomaterials and suggests integrating artificial intelligence and precision medicine to enhance their application in bone regeneration and other biomedical fields.
Collapse
Affiliation(s)
- Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Dongyang Zhou
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fuxiao Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghaizhongye Hospital, Shanghai, 200941, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
3
|
Yu X, Han F, Feng X, Wang X, Zhu Y, Ye C, Ji M, Chen Z, Tao R, Zhou Z, Wan F. Sea Cucumber-Inspired Aerogel for Ultrafast Hemostasis of Open Fracture. Adv Healthc Mater 2023; 12:e2300817. [PMID: 37340763 DOI: 10.1002/adhm.202300817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Indexed: 06/22/2023]
Abstract
The symptomatic management of hemorrhagic shock complicated by open fractures is a great challenge, because it is also complicated by complex wound bleeding, bacterial infection, and bone defects. Inspired by the water absorption and cross-sectional microstructure of sea cucumbers, in this study, a new sea cucumber-like aerogel (GCG) is proposed. Its aligned porous structure and composition can stop bleeding rapidly and effectively with a blood clotting index of 3.73 ± 1.8%. More importantly, the data of in vivo hemostasis test in an amputating rat tail hemostatic model (15.69 ± 2.45 s, 26.95 ± 8.43 mg) and liver puncture bleeding model (23.77 ± 2.68 s, 36.22 ± 16.92 mg) also indicate the excellent hemostatic performance of GCG. In addition, GCG also shows a significant inhibitory effect on S. aureus and E. coli, which can prevent the occurrence of postoperative osteomyelitis. Not only that, after filling in the bone defect, it is shown that this GCG aerogel completely degrades eight weeks after surgery and induces new bone ingrowth, achieving functional regeneration after hemostasis of an open fracture defect. Generally, because of its combination of hemostatic, antibacterial, and osteogenic activities, this new aerogel is a promising option for open fractures treatment.
Collapse
Affiliation(s)
- Xinyu Yu
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Fei Han
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xian Feng
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yang Zhu
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Cong Ye
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Minrui Ji
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhichao Chen
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ran Tao
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhenyu Zhou
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Fuyin Wan
- Department of Orthopeadic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| |
Collapse
|
4
|
Deng L, Huang L, Pan H, Zhang Q, Que Y, Fan C, Chang J, Ni S, Yang C. 3D printed strontium-zinc-phosphate bioceramic scaffolds with multiple biological functions for bone tissue regeneration. J Mater Chem B 2023; 11:5469-5482. [PMID: 36723376 DOI: 10.1039/d2tb02614g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Calcium phosphate (CaP) bioceramics are broadly employed for bone regeneration due to their excellent biocompatibility and osteoconductivity. However, they are not capable of repairing healing-impaired bone defects such as defects with conditions of ischemia or infection due to restricted bioactivities. In this study, we synthesized single-phased strontium-zinc-phosphate (SZP, SrZn2(PO4)2) bioceramics via a solution combustion method and further fabricated SZP scaffolds using a three-dimensional (3D) printing technique. Compared to 3D printed β-tricalcium phosphate (β-TCP) scaffolds, the 3D printed SZP scaffolds presented comparable porosity, compressive strength, and Young's modulus, but increased ability of osteogenesis, angiogenesis, immunomodulation and anti-bacterial activity. Specifically, 3D printed SZP scaffolds not only led to significantly higher osteogenic differentiation of MC3T3-E1 cells and pro-angiogenesis of human umbilical vein endothelial cells (HUVECs) directly or through macrophage-mediated immunomodulation, but also inhibited the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The in vivo study of the rat cranial bone defect model further confirmed better vascularized bone regeneration in 3D-printed SZP scaffolds. These findings indicate that the proposed 3D-printed SZP scaffolds might be a versatile candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Li Deng
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Lingwei Huang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Pan
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qi Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yumei Que
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chen Fan
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiang Chang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Siyu Ni
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| | - Chen Yang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
5
|
Koushik TM, Miller CM, Antunes E. Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds. Adv Healthc Mater 2023; 12:e2202766. [PMID: 36512599 PMCID: PMC11468595 DOI: 10.1002/adhm.202202766] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering (BTE) is a topic of interest for the last decade, and advances in materials, processing techniques, and the understanding of bone healing pathways have opened new avenues of research. The dual responsibility of BTE scaffolds in providing load-bearing capability and interaction with the local extracellular matrix to promote bone healing is a challenge in synthetic scaffolds. This article describes the usage and processing of multi-materials and hierarchical structures to mimic the structure of natural bone tissues to function as bioactive and load-bearing synthetic scaffolds. The first part of this literature review describes the physiology of bone healing responses and the interactions at different stages of bone repair. The following section reviews the available literature on biomaterials used for BTE scaffolds followed by some multi-material approaches. The next section discusses the impact of the scaffold's structural features on bone healing and the necessity of a hierarchical distribution in the scaffold structure. Finally, the last section of this review highlights the emerging trends in BTE scaffold developments that can inspire new tissue engineering strategies and truly develop the next generation of synthetic scaffolds.
Collapse
Affiliation(s)
- Tejas M. Koushik
- College of Science and EngineeringJames Cook UniversityTownsvilleQueensland4811Australia
| | - Catherine M. Miller
- College of Medicine and DentistryJames Cook UniversitySmithfieldQueensland4878Australia
| | - Elsa Antunes
- College of Science and EngineeringJames Cook UniversityTownsvilleQueensland4811Australia
| |
Collapse
|
6
|
A Comprehensive Review on Silk Fibroin as a Persuasive Biomaterial for Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24032660. [PMID: 36768980 PMCID: PMC9917095 DOI: 10.3390/ijms24032660] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/02/2023] Open
Abstract
Bone tissue engineering (BTE) utilizes a special mix of scaffolds, cells, and bioactive factors to regulate the microenvironment of bone regeneration and form a three-dimensional bone simulation structure to regenerate bone tissue. Silk fibroin (SF) is perhaps the most encouraging material for BTE given its tunable mechanical properties, controllable biodegradability, and excellent biocompatibility. Numerous studies have confirmed the significance of SF for stimulating bone formation. In this review, we start by introducing the structure and characteristics of SF. After that, the immunological mechanism of SF for osteogenesis is summarized, and various forms of SF biomaterials and the latest development prospects of SF in BTE are emphatically introduced. Biomaterials based on SF have great potential in bone tissue engineering, and this review will serve as a resource for future design and research.
Collapse
|
7
|
Fan Z, Liu H, Shi S, Ding Z, Zhang Z, Lu Q, Kaplan DL. Anisotropic silk nanofiber layers as regulators of angiogenesis for optimized bone regeneration. Mater Today Bio 2022; 15:100283. [PMID: 35634170 PMCID: PMC9130114 DOI: 10.1016/j.mtbio.2022.100283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022] Open
Abstract
Osteogenesis-angiogenesis coupling processes play a crucial role in bone regeneration. Here, electric field induced aligned nanofiber layers with tunable thickness were coated on the surface of pore walls inside the deferoxamine (DFO)-laden silk fibroin (SF) and hydroxyapatite (HA) composite scaffolds to regulate the release of DFO to control vascularization dynamically. Longer electric field treatments resulted in gradually thickening layers to reduce the release rate of DFO where the released amount of DFO decreased gradually from 84% to 63% after 28 days. Besides the osteogenic capacity of HA, the changeable release of DFO brought different angiogenic behaviors in bone regeneration process, which provided a desirable niche with osteogenic and angiogenic cues. Anisotropic cues were introduced to facilitate cell migration inside the scaffolds. Changeable cytokine secretion from endothelial cells cultured in the different scaffolds revealed the regulation of cell responses related to vascularization in vitro. Peak expression of angiogenic factors appeared at days 7, 21 and 35 for endothelial cells cultured in the scaffolds with different silk nanofier layers, suggesting the dynamical regulation of angiogenesis. Although all of the scaffolds had the same silk and HA composition, in vitro cell studies indicated different osteogenic capacities for the scaffolds, suggesting that the regulation of DFO release also influenced osteogenesis outcomes in vitro. In vivo, the best bone regeneration occurred in defects treated with the composite scaffolds that exhibited the best osteogenic capacity in vitro. Using a rat bone defect model, healing was achieved within 12 weeks, superior to those treated with previous SF-HA composite matrices. Controlling angiogenic properties of bone biomaterials dynamically is an effective strategy to improve bone regeneration capacity. Anisotropic silk nanofiber layers with tunable thickness control the sustained release of DFO dynamically. Dynamical regulation of angiogenesis was achieved in bone regeneration process through tuning the release behaviors of DFO. Significantly improved bone regeneration through the synergistic effect of optimal vascularization and osteogenesis.
Collapse
Affiliation(s)
- Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, PR China
| | - Hongxiang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, PR China
| | - Shilei Shi
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, PR China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, PR China
- Corresponding author.
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, PR China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, PR China
- Corresponding author.
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, United States
| |
Collapse
|