1
|
Samalia PD, Solanki J, Kam J, Angelo L, Niederer RL. From Dysbiosis to Disease: The Microbiome's Influence on Uveitis Pathogenesis. Microorganisms 2025; 13:271. [PMID: 40005638 PMCID: PMC11857511 DOI: 10.3390/microorganisms13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
The microbiome, comprising the diverse microbial communities inhabiting the human body, has emerged as a critical factor in regulating immune function and inflammation. The relationship between the microbiome and uveitis represents a promising frontier in ophthalmological research, with the microbiome increasingly implicated in disease onset and progression. Research has predominantly focused on the gut microbiome, with animal studies providing evidence that dysbiosis is a key factor in autoimmunity. As the understanding of the microbiome increases, so does the potential for developing innovative treatments that leverage the microbiome's impact on immune and inflammatory processes. Future research will be crucial for deciphering the complexities of the interaction between the microbiome and immune system and for creating effective microbiome-based therapies for those with uveitis. Incorporating microbiome research into clinical practice could transform how uveitis is managed, leading to better and more individualized approaches for management. This review discusses the current understanding of the microbiome-uveitis axis, the promise of microbiome-based diagnostics and therapeutics, and the critical need for large-scale, longitudinal studies. Unlocking the potential of microbiome-targeted approaches may revolutionize the management of uveitis and other inflammatory diseases.
Collapse
Affiliation(s)
- Priya D. Samalia
- Health New Zealand Auckland, Auckland 1051, New Zealand
- Department of Medicine, University of Otago, Dunedin 9016, New Zealand
| | | | - Joseph Kam
- Health New Zealand Auckland, Auckland 1051, New Zealand
- Department of Ophthalmology, University of Auckland, Auckland 1010, New Zealand
| | - Lize Angelo
- Department of Ophthalmology, University of Auckland, Auckland 1010, New Zealand
| | - Rachael L. Niederer
- Health New Zealand Auckland, Auckland 1051, New Zealand
- Department of Ophthalmology, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Janetos TM, Zakaria N, Goldstein DA. The Microbiome and Uveitis: A Narrative Review. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1638-1647. [PMID: 37024044 DOI: 10.1016/j.ajpath.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
The human intestinal microbiome is composed of hundreds of species and has recently been recognized as an important source of immune homeostasis. While dysbiosis, an altered microbiome from the normal core microbiome, has been associated with both intestinal and extraintestinal autoimmune disorders, including uveitis, causality has been difficult to establish. There are four proposed mechanisms of how the gut microbiome may influence the development of uveitis: molecular mimicry, imbalance of regulatory and effector T cells, increased intestinal permeability, and loss of intestinal metabolites. This review summarizes current literature on both animal and human studies that establish the link between dysbiosis and the development of uveitis, as well as provides evidence for the above mechanisms. Current studies provide valuable mechanistic insights as well as identify potential therapeutic targets. However, study limitations and the wide variability in the intestinal microbiome among populations and diseases make a specific targeted therapy difficult to establish. Further longitudinal clinical studies are required to identify any potential therapeutic that targets the intestinal microbiome.
Collapse
Affiliation(s)
- Timothy M Janetos
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Nancy Zakaria
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Ophthalmology, Faculty of Medicine, Alexandria University, Alexandria, Arab Republic of Egypt
| | - Debra A Goldstein
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
3
|
Rodríguez-Fernández CA, Iglesias MB, de Domingo B, Conde-Pérez K, Vallejo JA, Rodríguez-Martínez L, González-Barcia M, Llorenç V, Mondelo-Garcia C, Poza M, Fernández-Ferreiro A. Microbiome in Immune-Mediated Uveitis. Int J Mol Sci 2022; 23:ijms23137020. [PMID: 35806031 PMCID: PMC9266430 DOI: 10.3390/ijms23137020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
In the last decades, personalized medicine has been increasing its presence in different fields of medicine, including ophthalmology. A new factor that can help us direct medicine towards the challenge of personalized treatments is the microbiome. The gut microbiome plays an important role in controlling immune response, and dysbiosis has been associated with immune-mediated diseases such as non-infectious uveitis (NIU). In this review, we gather the published evidence, both in the pre-clinical and clinical studies, that support the possible role of intestinal dysbiosis in the pathogenesis of NIU, as well as the modulation of the gut microbiota as a new possible therapeutic target. We describe the different mechanisms that have been proposed to involve dysbiosis in the causality of NIU, as well as the potential pharmacological tools that could be used to modify the microbiome (dietary supplementation, antibiotics, fecal microbiota transplantation, immunomodulators, or biologic drugs) and, consequently, in the control of the NIU. Furthermore, there is increasing scientific evidence suggesting that the treatment with anti-TNF not only restores the composition of the gut microbiota but also that the study of the composition of the gut microbiome will help predict the response of each patient to anti-TNF treatment.
Collapse
Affiliation(s)
| | - Manuel Busto Iglesias
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Begoña de Domingo
- Ophthalmology Department, University Clinical Hospital of Santiago Compostela (SERGAS), 15706 Santiago de Compostela, Spain;
| | - Kelly Conde-Pérez
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
| | - Juan A. Vallejo
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
| | - Lorena Rodríguez-Martínez
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Victor Llorenç
- Clínic Institute of Ophthalmology (ICOF), Clinic Hospital of Barcelona, 08028 Barcelona, Spain;
- Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Clínic Hospital of Barcelona, 08036 Barcelona, Spain
| | - Cristina Mondelo-Garcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Margarita Poza
- Microbiology Research Group: meiGAbiome, Biomedical Research Institute (INIBIC), Center for Advanced Research (CICA), University of A Coruña (UDC), CIBER of Infectious Diseases (CIBERINF), 15006 A Coruña, Spain; (K.C.-P.); (J.A.V.)
- Correspondence: (M.P.); (A.F.-F.)
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (M.B.I.); (M.G.-B.); (C.M.-G.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
- Correspondence: (M.P.); (A.F.-F.)
| |
Collapse
|
4
|
Hou J, Tang Y, Chen Y, Chen D. The Role of the Microbiota in Graves' Disease and Graves' Orbitopathy. Front Cell Infect Microbiol 2022; 11:739707. [PMID: 35004341 PMCID: PMC8727912 DOI: 10.3389/fcimb.2021.739707] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023] Open
Abstract
Graves' disease (GD) is a clinical syndrome with an enlarged and overactive thyroid gland, an accelerated heart rate, Graves' orbitopathy (GO), and pretibial myxedema (PTM). GO is the most common extrathyroidal complication of GD. GD/GO has a significant negative impact on the quality of life. GD is the most common systemic autoimmune disorder, mediated by autoantibodies to the thyroid-stimulating hormone receptor (TSHR). It is generally accepted that GD/GO results from complex interactions between genetic and environmental factors that lead to the loss of immune tolerance to thyroid antigens. However, the exact mechanism is still elusive. Systematic investigations into GD/GO animal models and clinical patients have provided important new insight into these disorders during the past 4 years. These studies suggested that gut microbiota may play an essential role in the pathogenesis of GD/GO. Antibiotic vancomycin can reduce disease severity, but fecal material transfer (FMT) from GD/GO patients exaggerates the disease in GD/GO mouse models. There are significant differences in microbiota composition between GD/GO patients and healthy controls. Lactobacillus, Prevotella, and Veillonella often increase in GD patients. The commonly used therapeutic agents for GD/GO can also affect the gut microbiota. Antigenic mimicry and the imbalance of T helper 17 cells (Th17)/regulatory T cells (Tregs) are the primary mechanisms proposed for dysbiosis in GD/GO. Interventions including antibiotics, probiotics, and diet modification that modulate the gut microbiota have been actively investigated in preclinical models and, to some extent, in clinical settings, such as probiotics (Bifidobacterium longum) and selenium supplements. Future studies will reveal molecular pathways linking gut and thyroid functions and how they impact orbital autoimmunity. Microbiota-targeting therapeutics will likely be an essential strategy in managing GD/GO in the coming years.
Collapse
Affiliation(s)
- Jueyu Hou
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunjing Tang
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|