1
|
Stanić R, Vukojević K, Filipović N, Benzon B, Ogorevc M, Kunac N, Čanović S, Kovačević P, Paradžik Šimunović M, Konjevoda S. The Effect of Prostaglandin F2 Analog Treatment on the Immunoexpression of Fibrosis-Associated Factors in Patients with Glaucoma Undergoing Deep Sclerotomy. Int J Mol Sci 2024; 25:12618. [PMID: 39684329 DOI: 10.3390/ijms252312618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Long-term use of topical prostaglandins might initiate chronic conjunctival inflammation, leading to poor outcomes of glaucoma surgery. The aim of this study was to evaluate the immunoexpression pattern of HSP70, CTGF, SNAIL, aSMA, cMYB, and HIFa in the conjunctiva, episclera, and deep sclera in patients with glaucoma undergoing deep sclerectomy in order to establish an association between staining intensities and prostaglandin F2 (PGF2) treatment. Double immunofluorescence (HSP70, CTGF, SNAIL, aSMA, cMYB, and HIFa) was performed on conjunctiva, episclera, and deep sclera samples, which were obtained from 23 patients treated with PGF2 and 8 patients without PGF2 treatment. When comparing the ocular tissues of patients regarding treatment with PGF2 analogs, we found a significant increase in the immunoexpression of HSP70 in the conjunctival epithelium of patients treated with PGF2 analogs compared to those without PGF2 treatment. These patients also had an increase in SNAIL immunoexpression and a decrease in aSMA immunoexpression in the deep sclera. There were no significant differences in HIFa, CTGF, or cMYB immunoexpression levels between the two groups. Further research into the regulation of these factors in ocular tissues could lead to the development of potential novel therapeutic approaches in glaucoma management.
Collapse
Affiliation(s)
- Robert Stanić
- Department of Ophthalmology, University Hospital in Split, Šoltanska 1, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Nenad Kunac
- Department of Pathology, Forensic Medicine and Cytology, University Hospital in Split, Spinčićeva 1, 21000 Split, Croatia
| | - Samir Čanović
- Department of Ophtalmology, General Hospital Zadar, Ul. Bože Peričića 5, 23000 Zadar, Croatia
| | - Petra Kovačević
- Department of Ophthalmology, University Hospital Centre Zagreb, Kišpatićeva 12, 10000 Zagreb, Croatia
| | | | - Suzana Konjevoda
- Department of Ophtalmology, General Hospital Zadar, Ul. Bože Peričića 5, 23000 Zadar, Croatia
- Department of Health Studies, University of Zadar, Ulica Mihovila Pavlinovica 1, 23000 Zadar, Croatia
| |
Collapse
|
2
|
Zhang J, Yang X, Zong Y, Yu T, Yang X. miR-196b-5p regulates inflammatory process and migration via targeting Nras in trabecular meshwork cells. Int Immunopharmacol 2024; 129:111646. [PMID: 38325046 DOI: 10.1016/j.intimp.2024.111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Glaucoma, an insidious ophthalmic pathology, is typified by an aberrant surge in intraocular pressure (IOP) which culminates in the degeneration of retinal ganglion cells and optical neuropathy. The mitigation of IOP stands as the principal therapeutic strategy to forestall vision loss. The trabecular meshwork's (TM) integrity and functionality are pivotal in modulating aqueous humor egress. Despite their potential significance in glaucomatous pathophysiology, the implications of microRNAs (miRNAs) on TM functionality remain largely enigmatic. Transcriptomic sequencing was employed to delineate the miRNA expression paradigm within the limbal region of rodent glaucoma models, aiming to elucidate miRNA-mediated mechanisms within the glaucomatous milieu. Analytical scrutiny of the sequencing data disclosed 174 miRNAs with altered expression profiles, partitioned into 86 miRNAs with augmented expression and 88 with diminished expression. Notably, miRNAs such as hsa-miR-196b-5p were identified as having substantial expression discrepancies with concomitant statistical robustness, suggesting a potential contributory role in glaucomatous progression. Subsequent in vitro assays affirmed that miR-196b-5p augments the inflammatory cascade within immortalized human TM (iHTM) and glaucoma-induced human TM (GTM3) cells, concurrently attenuating cellular proliferation, motility, and cytoskeletal architecture. Additionally, miR-196b-5p implicates itself in the regulation of IOP and inflammatory processes in rodent models. At a mechanistic level, miR-196b-5p modulates its effects via the targeted repression of Nras (neuroblastoma RAS viral oncogene homolog). Collectively, these transcriptomic investigations furnish a comprehensive vista into the regulatory roles of miRNAs within the glaucomatous framework, and the identification of differentially expressed miRNAs alongside their targets could potentially illuminate novel molecular pathways implicated in glaucoma, thereby aiding in the development of innovative therapeutic avenues.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xuejiao Yang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yao Zong
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| | - Xian Yang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| |
Collapse
|
3
|
Coyle S, Khan MN, Chemaly M, Callaghan B, Doyle C, Willoughby CE, Atkinson SD, Gregory-Ksander M, McGilligan V. Targeting the NLRP3 Inflammasome in Glaucoma. Biomolecules 2021; 11:biom11081239. [PMID: 34439904 PMCID: PMC8393362 DOI: 10.3390/biom11081239] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a group of optic neuropathies characterised by the degeneration of retinal ganglion cells, resulting in damage to the optic nerve head (ONH) and loss of vision in one or both eyes. Increased intraocular pressure (IOP) is one of the major aetiological risk factors in glaucoma, and is currently the only modifiable risk factor. However, 30–40% of glaucoma patients do not present with elevated IOP and still proceed to lose vision. The pathophysiology of glaucoma is therefore not completely understood, and there is a need for the development of IOP-independent neuroprotective therapies to preserve vision. Neuroinflammation has been shown to play a key role in glaucoma and, specifically, the NLRP3 inflammasome, a key driver of inflammation, has recently been implicated. The NLRP3 inflammasome is expressed in the eye and its activation is reported in pre-clinical studies of glaucoma. Activation of the NLRP3 inflammasome results in IL-1β processing. This pro inflammatory cytokine is elevated in the blood of glaucoma patients and is believed to drive neurotoxic inflammation, resulting in axon degeneration and the death of retinal ganglion cells (RGCs). This review discusses glaucoma as an inflammatory disease and evaluates targeting the NLRP3 inflammasome as a therapeutic strategy. A hypothetical mechanism for the action of the NLRP3 inflammasome in glaucoma is presented.
Collapse
Affiliation(s)
- Sophie Coyle
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
| | - Mohammed Naeem Khan
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
| | - Melody Chemaly
- Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76 Solna, Sweden;
| | - Breedge Callaghan
- Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK; (B.C.); (C.D.); (C.E.W.)
| | - Chelsey Doyle
- Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK; (B.C.); (C.D.); (C.E.W.)
| | - Colin E. Willoughby
- Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK; (B.C.); (C.D.); (C.E.W.)
| | - Sarah D. Atkinson
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
| | - Meredith Gregory-Ksander
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary and Harvard Medical School, Boston, MA 02114, USA;
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
- Correspondence:
| |
Collapse
|
4
|
Abrishami M, Omidtabrizi A. Response to "Comment On: Ocular Manifestations of Hospitalized Patients with COVID-19 in Northeast of Iran". Ocul Immunol Inflamm 2021; 29:698-699. [PMID: 34242120 DOI: 10.1080/09273948.2021.1903940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mojtaba Abrishami
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Omidtabrizi
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|