1
|
Zhang CJ, Qu XY, Yu ZY, Yang J, Zhu B, Zhong LY, Sun J, He JH, Zhu YX, Dong L, Xu WJ. Research of the dynamic regulatory mechanism of Compound Danshen Dripping Pills on myocardial infarction based on metabolic trajectory analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155626. [PMID: 38850631 DOI: 10.1016/j.phymed.2024.155626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/02/2023] [Accepted: 04/09/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is a serious cardiovascular disease, which presents different pathophysiological changes with the prolongation of the disease. Compound danshen dripping pills (CDDP) has obvious advantages in MI treatment and widely used in the clinic. However, the current studies were mostly focused on the endpoint of CDDP intervention, lacking the dynamic attention to the disease process. It is of great value to establish a dynamic research strategy focused on the changes in pharmacodynamic substances for guiding clinical medication more precisely. PURPOSE It is aimed to explore the dynamic regulating pattern of CDDP on MI based on metabolic trajectory analysis, and then clarify the variation characteristic biomarkers and pharmacodynamic substances in the intervention process. METHODS The MI model was successfully prepared by coronary artery left anterior descending branch ligation, and then CDDP intervention was given for 28 days. Endogenous metabolites and the components of CDDP in serum were measured by LC/MS technique simultaneously to identify dynamic the metabolic trajectory and screen the characteristic pharmacodynamic substances at different points. Finally, network pharmacology and molecular docking techniques were used to simulate the core pharmacodynamic substances and core target binding, then validated at the genetic and protein level by Q-PCR and western blotting technology. RESULTS CDDP performed typical dynamic regulation features on metabolite distribution, biological processes, and pharmacodynamic substances. During 1-7 days, it mainly regulated lipid metabolism and inflammation, the Phosphatidylcholine (PC(18:1(9Z/18:1(9Z)) and Sphingomyelin (SM(d18:1/23:1(9Z)), SM(d18:1/24:1(15Z)), SM(d18:0/16:1(9Z))) were the main characteristic biomarkers. Lipid metabolism was the mainly regulation pathway during 14-21 days, and the characteristic biomarkers were the Lysophosphatidylethanolamine (LysoPE(0:0/20:0), PE-NMe2(22:1(13Z)/15:0)) and Sphingomyelin (SM(d18:1/23:1(9Z))). At 28 days, in addition to inflammatory response and lipid metabolism, fatty acid metabolism also played the most important role. Correspondingly, Lysophosphatidylcholine (LysoPC(20:0/0:0)), Lysophosphatidylserine (LPS(18:0/0:0)) and Fatty acids (Linoelaidic acid) were the characteristic biomarkers. Based on the results of metabolite distribution and biological process, the characteristic pharmacodynamic substances during the intervention were further identified. The results showed that various kinds of Saponins and Tanshinones as the important active ingredients performed a long-range regulating effect on MI. And the other components, such as Tanshinol and Salvianolic acid B affected Phosphatidylcholine and Sphingomyelin through Relaxin Signaling pathway during the early intervention. Protocatechualdehyde and Rosmarinic acid affected Lysophosphatidylethanolamine and Sphingomyelin through EGFR Tyrosine kinase inhibitor resistance during the late intervention. Tanshinone IIB and Isocryptotanshinone via PPAR signaling pathway affected Lysophosphatidylcholine, Lysophosphatidylserine, and Fatty acids. CONCLUSION The dynamic regulating pattern was taken as the entry point and constructs the dynamic network based on metabolic trajectory analysis, establishes the dynamic correlation between the drug-derived components and the endogenous metabolites, and elucidates the characteristic biomarkers affecting the changes of the pharmacodynamic indexes, systematically and deeply elucidate the pharmacodynamic substance and mechanism of CDDP on MI. It also enriched the understanding of CDDP and provided a methodological reference for the dynamic analysis of complex systems of TCM.
Collapse
Affiliation(s)
- Cai-Juan Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing,100700, China
| | - Xiao-Yang Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Zhi-Ying Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Jie Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Bo Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Lin-Ying Zhong
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Jing Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiang-Hua He
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Yu-Xin Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Ling Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China.
| | - Wen-Juan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China.
| |
Collapse
|
2
|
Wu YJ, Deng B, Wang SB, Qiao R, Zhang XW, Lu Y, Wang L, Gu SZ, Zhang YQ, Li KQ, Yu ZL, Wu LX, Zhao SB, Zhou SL, Yang Y, Wang LS. Effects of Compound Danshen Dripping Pills on Ventricular Remodeling and Cardiac Function after Acute Anterior Wall ST-Segment Elevation Myocardial Infarction (CODE-AAMI): Protocol for a Randomized Placebo-Controlled Trial. Chin J Integr Med 2023; 29:1059-1065. [PMID: 37656413 DOI: 10.1007/s11655-023-3648-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Ventricular remodeling after acute anterior wall ST-segment elevation myocardial infarction (AAMI) is an important factor in occurrence of heart failure which additionally results in poor prognosis. Therefore, the treatment of ventricular remodeling needs to be further optimized. Compound Danshen Dripping Pills (CDDP), a traditional Chinese medicine, exerts a protective effect on microcirculatory disturbance caused by ischemia-reperfusion injury and attenuates ventricular remodeling after myocardial infarction. OBJECTIVE This study is designed to evaluate the efficacy and safety of CDDP in improving ventricular remodeling and cardiac function after AAMI on a larger scale. METHODS This study is a multi-center, randomized, double-blind, placebo-controlled, parallel-group clinical trial. The total of 268 patients with AAMI after primary percutaneous coronary intervention (pPCI) will be randomly assigned 1:1 to the CDDP group (n=134) and control group (n=134) with a follow-up of 48 weeks. Both groups will be treated with standard therapy of ST-segment elevation myocardial infarction (STEMI), with the CDDP group administrating 20 tablets of CDDP before pPCI and 10 tablets 3 times daily after pPCI, and the control group treated with a placebo simultaneously. The primary endpoint is 48-week echocardiographic outcomes including left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume index (LVEDVI), and left ventricular end-systolic volume index (LVESVI). The secondary endpoint includes the change in N terminal pro-B-type natriuretic peptide (NT-proBNP) level, arrhythmias, and cardiovascular events (death, cardiac arrest, or cardiopulmonary resuscitation, rehospitalization due to heart failure or angina pectoris, deterioration of cardiac function, and stroke). Investigators and patients are both blinded to the allocated treatment. DISCUSSION This prospective study will investigate the efficacy and safety of CDDP in improving ventricular remodeling and cardiac function in patients undergoing pPCI for a first AAMI. Patients in the CDDP group will be compared with those in the control group. If certified to be effective, CDDP treatment in AAMI will probably be advised on a larger scale. (Trial registration No. NCT05000411).
Collapse
Affiliation(s)
- Yu-Jie Wu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bo Deng
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Si-Bo Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rui Qiao
- Department of Cardiology, Anqing Municipal Hospital Affiliated to Anhui Medical University, Anqing, Jiangsu Province, 246003, China
| | - Xi-Wen Zhang
- Department of Cardiology, Huai'an First People's Hospital, Huai'an, Jiangsu Province, 223300, China
| | - Yuan Lu
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221006, China
| | - Li Wang
- Department of Cardiology, Pukou Branch of Jiangsu People's Hospital, Nanjing, 211899, China
| | - Shun-Zhong Gu
- Department of Cardiology, Hai'an People's Hospital, Nantong, Jiangsu Province, 226699, China
| | - Yu-Qing Zhang
- Department of Cardiology, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211199, China
| | - Kai-Qiao Li
- Department of Cardiology, Qixia District Hospital of Nanjing City, Nanjing, 210046, China
| | - Zong-Liang Yu
- Department of Cardiology, the First People's Hospital of Kunshan Affiliated to Jiangsu University, Kunshan, Jiangsu Province, 215300, China
| | - Li-Xing Wu
- Department of Cardiology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211299, China
| | - Sheng-Biao Zhao
- Department of Cardiology, Nanjing Meishan Hospital, Nanjing, 210039, China
| | - Shuang-Lin Zhou
- Department of Cardiology, Nanjing Meishan Hospital, Nanjing, 210039, China
| | - Yang Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian-Sheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
3
|
Park TH, Lee HG, Cho SY, Park SU, Jung WS, Park JM, Ko CN, Cho KH, Kwon S, Moon SK. A Comparative Study on the Neuroprotective Effect of Geopung-Chunghyuldan on In Vitro Oxygen-Glucose Deprivation and In Vivo Permanent Middle Cerebral Artery Occlusion Models. Pharmaceuticals (Basel) 2023; 16:ph16040596. [PMID: 37111353 PMCID: PMC10143156 DOI: 10.3390/ph16040596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Geopung-Chunghyuldan (GCD), which is a mixture of Chunghyuldan (CD), Radix Salviae Miltiorrhizae, Radix Notoginseng, and Borneolum Syntheticum, is used to treat ischemic stroke in traditional Korean medicine. This study aimed to investigate the effects of GCD and CD on ischemic brain damage using in vitro and in vivo stroke models, as well as to elucidate the synergistic effects of GCD against ischemic insult. To study the effect of GCD in an in vitro ischemia model, SH-SY5Y cells were exposed to oxygen-glucose deprivation (OGD). Cell death after 16 h of OGD exposure was measured using the MTT assay and live/dead cell counting methods. An in vivo ischemia mice model was established through permanent middle cerebral artery occlusion (pMCAO). To determine the neuroprotective effect of GCD, it was orally administered immediately and 2 h after pMCAO. The infarct volume was measured through 2,3,5-triphenyltetrazolium chloride staining at 24 h after pMCAO. Compared with the control group, GCD treatment significantly reduced OGD-induced cell death in SH-SY5Y cells; however, CD treatment did not show a significant protective effect. In the pMCAO model, compared with the control group, treatment with GCD and CD significantly and mildly reduced the infarct volume, respectively. Our findings indicate that compared with CD, GCD may allow a more enhanced neuroprotective effect in acute ischemic stroke, indicating a potential synergistic neuroprotective effect. The possibility of GCD as a novel alternative choice for the prevention and treatment of ischemic stroke is suggested.
Collapse
Affiliation(s)
- Tae-Hoon Park
- Department of Korean Medicine Cardiology and Neurology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Han-Gyul Lee
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Yeon Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Uk Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo-Sang Jung
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jung-Mi Park
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Nam Ko
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki-Ho Cho
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seungwon Kwon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sang-Kwan Moon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Wang T, Liang L, Zhao C, Sun J, Wang H, Wang W, Lin J, Hu Y. Elucidating direct kinase targets of compound Danshen dropping pills employing archived data and prediction models. Sci Rep 2021; 11:9541. [PMID: 33953309 PMCID: PMC8100098 DOI: 10.1038/s41598-021-89035-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Research on direct targets of traditional Chinese medicine (TCM) is the key to study the mechanism and material basis of it, but there is still no effective methods at present. We took Compound Danshen dropping pills (CDDP) as a study case to establish a strategy to identify significant direct targets of TCM. As a result, thirty potential active kinase targets of CDDP were identified. Nine of them had potential dose-dependent effects. In addition, the direct inhibitory effect of CDDP on three kinases, AURKB, MET and PIM1 were observed both on biochemical level and cellular level, which could not only shed light on the mechanisms of action involved in CDDP, but also suggesting the potency of drug repositioning of CDDP. Our results indicated that the research strategy including both in silico models and experimental validation that we built, were relatively efficient and reliable for direct targets identification for TCM prescription, which will help elucidating the mechanisms of TCM and promoting the modernization of TCM.
Collapse
Affiliation(s)
- Tongxing Wang
- GeneNet Pharmaceuticals Co. Ltd., No. 1, Tingjiang West Road, Beichen District, Tianjin, 300410, China
| | - Lu Liang
- College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Jinnan District, Tianjin, 300353, China
| | - Chunlai Zhao
- GeneNet Pharmaceuticals Co. Ltd., No. 1, Tingjiang West Road, Beichen District, Tianjin, 300410, China
| | - Jia Sun
- GeneNet Pharmaceuticals Co. Ltd., No. 1, Tingjiang West Road, Beichen District, Tianjin, 300410, China
| | - Hairong Wang
- GeneNet Pharmaceuticals Co. Ltd., No. 1, Tingjiang West Road, Beichen District, Tianjin, 300410, China
| | - Wenjia Wang
- GeneNet Pharmaceuticals Co. Ltd., No. 1, Tingjiang West Road, Beichen District, Tianjin, 300410, China
| | - Jianping Lin
- College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Jinnan District, Tianjin, 300353, China
| | - Yunhui Hu
- GeneNet Pharmaceuticals Co. Ltd., No. 1, Tingjiang West Road, Beichen District, Tianjin, 300410, China.
| |
Collapse
|
5
|
Liao W, Ma X, Li J, Li X, Guo Z, Zhou S, Sun H. A review of the mechanism of action of Dantonic® for the treatment of chronic stable angina. Biomed Pharmacother 2019; 109:690-700. [DOI: 10.1016/j.biopha.2018.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 01/04/2023] Open
|
6
|
Chinese Herbal Cardiotonic Pill Stabilizes Vulnerable Plaques in Rabbits by Decreasing the Expression of Adhesion Molecules. J Cardiovasc Pharmacol 2017; 68:215-22. [PMID: 27110743 PMCID: PMC5049970 DOI: 10.1097/fjc.0000000000000403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cardiotonic pill (CP), consisting of a mixture of Radix Salviae Miltiorrhizae, Radix Notoginseng, and Borneolum Syntheticum, has been widely used in the prevention and treatment of cardiovascular disease. Adhesion molecules, including intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1, are involved in the development of vulnerable plaque. We investigated the effect of the CP in a rabbit model of vulnerable plaque established by local transfection with p53 gene. Compared with the control group, rabbits with vulnerable plaque showed a significantly lower intima-media thickness and plaque burden after CP treatment for 12 weeks. Moreover, the reduction in rate of plaque rupture and vulnerability index was similar. On enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry analysis, the expression of intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 was inhibited with CP treatment. CP treatment could postpone atherosclerotic plaque development and stabilize vulnerable plaque by inhibiting the expression of adhesion molecules in treatment of cardiovascular disease.
Collapse
|
7
|
Guo J, Yong Y, Aa J, Cao B, Sun R, Yu X, Huang J, Yang N, Yan L, Li X, Cao J, Aa N, Yang Z, Kong X, Wang L, Zhu X, Ma X, Guo Z, Zhou S, Sun H, Wang G. Compound danshen dripping pills modulate the perturbed energy metabolism in a rat model of acute myocardial ischemia. Sci Rep 2016; 6:37919. [PMID: 27905409 PMCID: PMC5131350 DOI: 10.1038/srep37919] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 11/02/2016] [Indexed: 01/14/2023] Open
Abstract
The continuous administration of compound danshen dripping pills (CDDP) showed good efficacy in relieving myocardial ischemia clinically. To probe the underlying mechanism, metabolic features were evaluated in a rat model of acute myocardial ischemia induced by isoproterenol (ISO) and administrated with CDDP using a metabolomics platform. Our data revealed that the ISO-induced animal model showed obvious myocardial injury, decreased energy production, and a marked change in metabolomic patterns in plasma and heart tissue. CDDP pretreatment increased energy production, ameliorated biochemical indices, modulated the changes and metabolomic pattern induced by ISO, especially in heart tissue. For the first time, we found that ISO induced myocardial ischemia was accomplished with a reduced fatty acids metabolism and an elevated glycolysis for energy supply upon the ischemic stress; while CDDP pretreatment prevented the tendency induced by ISO and enhanced a metabolic shift towards fatty acids metabolism that conventionally dominates energy supply to cardiac muscle cells. These data suggested that the underlying mechanism of CDDP involved regulating the dominant energy production mode and enhancing a metabolic shift toward fatty acids metabolism in ischemic heart. It was further indicated that CDDP had the potential to prevent myocardial ischemia in clinic.
Collapse
Affiliation(s)
- Jiahua Guo
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Yonghong Yong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Bei Cao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Runbin Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Xiaoyi Yu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Jingqiu Huang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Na Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Lulu Yan
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Xinxin Li
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Jing Cao
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Nan Aa
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Xuanxuan Zhu
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, No. 282 Hanzhong Road, Nanjing, 210029, China
| | - Xiaohui Ma
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
- School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, China
| | - Zhixin Guo
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Shuiping Zhou
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - He Sun
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
- School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| |
Collapse
|
8
|
A Phase I Dose-escalation Study to Evaluate Tolerability in a Western Population to T89, a Modern Cardiovascular Herbal Medicine. J Cardiovasc Pharmacol 2012; 60:513-9. [DOI: 10.1097/fjc.0b013e31826f6179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Kopp CW, Gremmel T, Steiner S, Seidinger D, Minar E, Maurer G, Huber K. Platelet-monocyte cross talk and tissue factor expression in stable angina vs. unstable angina/non ST-elevation myocardial infarction. Platelets 2011; 22:530-6. [DOI: 10.3109/09537104.2011.573599] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Tian J, Wen Y, Yan L, Cheng H, Yang H, Wang J, Kozman H, Villarreal D, Liu K. Vascular Endothelial Dysfunction in Patients with Newly Diagnosed Type 2 Diabetes and Effects of 2-year and 5-year Multifactorial Intervention. Echocardiography 2011; 28:1133-40. [DOI: 10.1111/j.1540-8175.2011.01514.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
Ma C, Yao Y, Yue QX, Zhou XW, Yang PY, Wu WY, Guan SH, Jiang BH, Yang M, Liu X, Guo DA. Differential proteomic analysis of platelets suggested possible signal cascades network in platelets treated with salvianolic acid B. PLoS One 2011; 6:e14692. [PMID: 21379382 PMCID: PMC3040754 DOI: 10.1371/journal.pone.0014692] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Accepted: 01/25/2011] [Indexed: 11/19/2022] Open
Abstract
Background Salvianolic acid B (SB) is an active component isolated from Danshen, a traditional Chinese medicine widely used for the treatment of cardiovascular disorders. Previous study suggested that SB might inhibit adhesion as well as aggregation of platelets by a mechanism involving the integrin α2β1. But, the signal cascades in platelets after SB binding are still not clear. Methodology/Principal Findings In the present study, a differential proteomic analysis (two-dimensional electrophoresis) was conducted to check the protein expression profiles of rat platelets with or without treatment of SB. Proteins altered in level after SB exposure were identified by MALDI-TOF MS/MS. Treatment of SB caused regulation of 20 proteins such as heat shock-related 70 kDa protein 2 (hsp70), LIM domain protein CLP-36, copine I, peroxiredoxin-2, coronin-1 B and cytoplasmic dynein intermediate chain 2C. The regulation of SB on protein levels was confirmed by Western blotting. The signal cascades network induced by SB after its binding with integrin α2β1 was predicted. To certify the predicted network, binding affinity of SB to integrin α2β1 was checked in vitro and ex vivo in platelets. Furthermore, the effects of SB on protein levels of hsp70, coronin-1B and intracellular levels of Ca(2+) and reactive oxygen species (ROS) were checked with or without pre-treatment of platelets using antibody against integrin α2β1. Electron microscopy study confirmed that SB affected cytoskeleton structure of platelets. Conclusions/Significance Integrin α2β1 might be one of the direct target proteins of SB in platelets. The signal cascades network of SB after binding with integrin α2β1 might include regulation of intracellular Ca(2+) level, cytoskeleton-related proteins such as coronin-1B and cytoskeleton structure of platelets.
Collapse
Affiliation(s)
- Chao Ma
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tang M, Zhao XG, Gu YJ, Chen CZ. An in vitro model for studying neutrophil activation during cardiopulmonary bypass by using a polymerase chain reaction thermocycler. Altern Lab Anim 2010; 38:213-9. [PMID: 20602537 DOI: 10.1177/026119291003800307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The accurate temperature control of a polymerase chain reaction (PCR) thermocycler was exploited in developing an in vitro model to study neutrophil activation during cardiopulmonary bypass. Neutrophils from 12 volunteers underwent temperature changes in a PCR thermocycler (37 degrees C for 30 minutes, 28 degrees C for 60 minutes, and then 37 degrees C for 90 minutes). Different co-incubates were applied to neutrophils, as follows: Group A: phosphate-buffered saline solution; Group B: platelet activating factor (PAF) ; Group C: platelet-depleted plasma; Group D: platelet-depleted plasma + PAF; and Group E: platelet-rich plasma. Membrane-bound elastase (MBE) activity was measured every 30 minutes throughout the experiment. MBE activity decreased significantly after hypothermia, compared with the baseline level (p < 0.001), and it resumed an increase after re-warming. Among all co-incubates, platelet-rich plasma was the most potent pro-inflammatory stimulus to neutrophils. A linear correlation was found between MBE and platelet count in platelet-rich plasma (p = 0.004). A novel in vitro model involving a PCR thermocycler has been proved to be reliable in the study of neutrophil activation during cardiopulmonary bypass. The model could possibly be used as an alternative to animals in the development of new drugs to combat neutrophil damage to tissues and organs during cardiopulmonary bypass in cardiac surgery.
Collapse
Affiliation(s)
- Min Tang
- Department of Cardiothoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | |
Collapse
|
13
|
Xia L, Liu HL, Li P, Zhou JL, Qi LW, Yi L, Chen J. Rapid and sensitive analysis of multiple bioactive constituents in Compound Danshen preparations using LC-ESI-TOF-MS. J Sep Sci 2008; 31:3156-69. [DOI: 10.1002/jssc.200800327] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|