1
|
Sennett C, Jia W, Khalil JS, Hindle MS, Coupland C, Calaminus SDJ, Langer JD, Frost S, Naseem KM, Rivero F, Ninkina N, Buchman V, Aburima A. α-Synuclein Deletion Impairs Platelet Function: A Role for SNARE Complex Assembly. Cells 2024; 13:2089. [PMID: 39768180 PMCID: PMC11674906 DOI: 10.3390/cells13242089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Granule secretion is an essential platelet function that contributes not only to haemostasis but also to wound healing, inflammation, and atherosclerosis. Granule secretion from platelets is facilitated, at least in part, by Soluble N-ethylmaleimide-Sensitive Factor (NSF) Attachment Protein Receptor (SNARE) complex-mediated granule fusion. Although α-synuclein is a protein known to modulate the assembly of the SNARE complex in other cells, its role in platelet function remains poorly understood. In this study, we provide evidence that α-synuclein is critical for haemostasis using α-synuclein-deficient (-/-) mice. The genetic deletion of α-synuclein resulted in impaired platelet aggregation, secretion, and adhesion in vitro. In vivo haemostasis models showed that α-synuclein-/- mice had prolonged bleeding times and activated partial thromboplastin times (aPTTs). Mechanistically, platelet activation induced α-synuclein serine (ser) 129 phosphorylation and re-localisation to the platelet membrane, accompanied by an increased association with VAMP 8, syntaxin 4, and syntaxin 11. This phosphorylation was calcium (Ca2+)- and RhoA/ROCK-dependent and was inhibited by prostacyclin (PGI2). Our data suggest that α-synuclein regulates platelet secretion by facilitating SNARE complex formation.
Collapse
Affiliation(s)
- Christopher Sennett
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK (W.J.)
| | - Wanzhu Jia
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK (W.J.)
| | - Jawad S. Khalil
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.)
| | - Matthew S. Hindle
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK;
| | - Charlie Coupland
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK (W.J.)
| | - Simon D. J. Calaminus
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK (W.J.)
| | - Julian D. Langer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany;
| | - Sean Frost
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (S.F.); (F.R.)
| | - Khalid M. Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.)
| | - Francisco Rivero
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK; (S.F.); (F.R.)
| | - Natalia Ninkina
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; (N.N.)
| | - Vladimir Buchman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; (N.N.)
| | - Ahmed Aburima
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK (W.J.)
| |
Collapse
|
2
|
Scalise A, Aggarwal A, Sangwan N, Hamer A, Guntupalli S, Park HE, Aleman JO, Cameron SJ. A Divergent Platelet Transcriptome in Patients with Lipedema and Lymphedema. Genes (Basel) 2024; 15:737. [PMID: 38927673 PMCID: PMC11202821 DOI: 10.3390/genes15060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Lipedema and lymphedema are physically similar yet distinct diseases that are commonly misdiagnosed. We previously reported that lipedema and lymphedema are associated with increased risk for venous thromboembolism (VTE). The underlying etiology of the prothrombotic profile observed in lipedema and lymphedema is unclear, but may be related to alterations in platelets. Our objective was to analyze the platelet transcriptome to identify biological pathways that may provide insight into platelet activation and thrombosis. The platelet transcriptome was evaluated in patients with lymphedema and lipedema, then compared to control subjects with obesity. Patients with lipedema were found to have a divergent transcriptome from patients with lymphedema. The platelet transcriptome and impacted biological pathways in lipedema were surprisingly similar to weight-matched comparators, yet different when compared to overweight individuals with a lower body mass index (BMI). Differences in the platelet transcriptome for patients with lipedema and lymphedema were found in biological pathways required for protein synthesis and degradation, as well as metabolism. Key differences in the platelet transcriptome for patients with lipedema compared to BMI-matched subjects involved metabolism and glycosaminoglycan processing. These inherent differences in the platelet transcriptome warrant further investigation, and may contribute to the increased risk of thrombosis in patients with lipedema and lymphedema.
Collapse
Affiliation(s)
- Alliefair Scalise
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Anu Aggarwal
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Annelise Hamer
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Suman Guntupalli
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Huijun Edelyn Park
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Jose O. Aleman
- Holman Division of Endocrinology, New York University, New York, NY 10012, USA;
| | - Scott J. Cameron
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Lerner Research Institute, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Hematology, Taussig Cancer Center, Cleveland, OH 44195, USA
| |
Collapse
|
3
|
Beura SK, Sahoo G, Yadav S, Yadav P, Panigrahi AR, Singh SK. Investigating the role of rotenone on human blood platelets: Molecular insights into abnormal platelet functions in Parkinson's disease. J Biochem Mol Toxicol 2024; 38:e23747. [PMID: 38800879 DOI: 10.1002/jbt.23747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Parkinson's disease (PD) is a predominant neuromotor disorder characterized by the selective death of dopaminergic neurons in the midbrain. The majority of PD cases are sporadic or idiopathic, with environmental toxins and pollutants potentially contributing to its development or exacerbation. However, clinical PD patients are often associated with a reduced stroke frequency, where circulating blood platelets are indispensable. Although platelet structural impairment is evident in PD, the platelet functional alterations and their underlying molecular mechanisms are still obscure. Therefore, we investigated rotenone (ROT), an environmental neurotoxin that selectively destroys dopaminergic neurons mimicking PD, on human blood platelets to explore its impact on platelet functions, thus replicating PD conditions in vitro. Our study deciphered that ROT decreased thrombin-induced platelet functions, including adhesion, activation, secretion, and aggregation in human blood platelets. As ROT is primarily responsible for generating intracellular reactive oxygen species (ROS), and ROS is a key player regulating the platelet functional parameters, we went on to check the effect of ROT on platelet ROS production. In our investigation, it became evident that ROT treatment resulted in the stimulation of ROS production in human blood platelets. Additionally, we discovered that ROT induced ROS production by augmenting Ca2+ mobilization from inositol 1,4,5-trisphosphate receptor. Apart from this, the treatment of ROT triggers protein kinase C associated NADPH oxidase-mediated ROS production in platelets. In summary, this research, for the first time, highlights ROT-induced abnormal platelet functions and may provide a mechanistic insight into the altered platelet activities observed in PD patients.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Gaurahari Sahoo
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Sonika Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | | | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
4
|
Alfar HR, Nthenge-Ngumbau DN, Saatman KE, Whiteheart SW. EcoHIV-Infected Mice Show No Signs of Platelet Activation. Viruses 2023; 16:55. [PMID: 38257755 PMCID: PMC10819473 DOI: 10.3390/v16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Platelets express several surface receptors that could interact with different viruses. To understand the mechanisms of HIV-1's interaction with platelets, we chose the EcoHIV model. While EcoHIV is an established model for neuroAIDS, its effects on platelets are ill-defined. Our results indicate that EcoHIV behaves differently from HIV-1 and is cleared from circulation after 48 h post-infection. The EcoHIV course of infection resembles an HIV-1 infection under the effects of combined antiretroviral therapy (cART) since infected mice stayed immunocompetent and the virus was readily detected in the spleen. EcoHIV-infected mice failed to become thrombocytopenic and showed no signs of platelet activation. One explanation is that mouse platelets lack the EcoHIV receptor, murine Cationic Amino acid Transporter-1 (mCAT-1). No mCAT-1 was detected on their surface, nor was any mCAT-1 mRNA detected. Thus, mouse platelets would not bind or become activated by EcoHIV. However, impure virus preparations, generated by Polyethylene Glycol (PEG) precipitation, do activate platelets, suggesting that nonspecific PEG-precipitates may contain other platelet activators (e.g., histones and cell debris). Our data do not support the concept that platelets, through general surface proteins such as DC-SIGN or CLEC-2, have a wide recognition for different viruses and suggest that direct platelet/pathogen interactions are receptor/ligand specific.
Collapse
Affiliation(s)
- Hammodah R. Alfar
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40506, USA;
| | - Dominic Ngima Nthenge-Ngumbau
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40506, USA; (D.N.N.-N.); (K.E.S.)
| | - Kathryn E. Saatman
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40506, USA; (D.N.N.-N.); (K.E.S.)
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40506, USA;
| |
Collapse
|