1
|
Liu S, Li Y, Yang Y, Li X, Wang L, Xiao X, Li CZ. Lateral flow analysis test strips based on aggregation-induced emission technique: Principle, design, and application. Biosens Bioelectron 2025; 272:117058. [PMID: 39746282 DOI: 10.1016/j.bios.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
This review examines the potential of aggregation-induced luminescence (AIE) materials in lateral flow assays (LFA) to enhance the sensitivity and specificity of a range of assay applications. LFA is a straightforward and effective paper-based platform for the rapid detection of target analytes in mixtures. Its simple design, low cost, and ease of operation are among the most attractive advantages of LFA. The signal reporting label, which constitutes the core component of LFA detection, is of paramount importance for enhancing the sensitivity of the detection process. The sensitivity of traditional LFA signal labels is insufficient for the detection of biomarkers at low concentrations. To address this issue, AIE materials have been developed in recent years. These materials can significantly enhance the luminescence intensity at high concentrations or in aggregated states, exhibiting excellent photostability and a high signal-to-noise ratio. They possess the advantages of high quantum yields, good photostability, and strong fluorescence, rendering them suitable for a variety of applications, including medical diagnostics, food safety, and environmental monitoring. This review therefore provides an overview of the operational principles of AIE and LFA, details the selection of AIE materials, the design of the platform and their applications, and reviews the latest research. Notable examples include the detection of viral pathogens, bacterial and mycotoxin contamination, antibiotic residues, and pesticide residues. The integration of AIE materials in LFA technology has demonstrated the potential for rapid, accurate, and cost-effective diagnostics. However, challenges remain in large-scale synthesis and multiplexed assays. The paper concludes with a discussion of current limitations and future directions for the technology.
Collapse
Affiliation(s)
- Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yongqi Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yunchao Yang
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Xue Li
- Juxintang (Chengdu) Biotechnology Co., Ltd., Chengdu, 641400, China
| | - Lijun Wang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| | - Xun Xiao
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Chen-Zhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China; Juxintang (Chengdu) Biotechnology Co., Ltd., Chengdu, 641400, China.
| |
Collapse
|
2
|
Fan L, Yan W, Chen Q, Tan F, Tang Y, Han H, Yu R, Xie N, Gao S, Chen W, Chen Z, Zhang P. One-Component Dual-Readout Aggregation-Induced Emission Nanobeads for Qualitative and Quantitative Detection of C-Reactive Protein at the Point of Care. Anal Chem 2024; 96:401-408. [PMID: 38134291 DOI: 10.1021/acs.analchem.3c04441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Fluorescent lateral flow immunoassay (LFA) systems are versatile tools for sensitive and quantitative detection of disease markers at the point of care. However, traditional fluorescent nanoparticle-based lateral flow immunoassays are not visible under room light, necessitate an additional fluorescent reader, and lack flexibility for different application scenarios. Herein, we report a dual-readout LFA system for the rapid and sensitive detection of C-reactive protein (CRP) in clinical samples. The system relied on the aggregation-induced emission nanobeads (AIENBs) encapsulated with red AIE luminogen, which possesses both highly fluorescent and colorimetric properties. The AIENB-based LFA in the naked-eye mode was able to qualitatively detect CRP levels as low as 8.0 mg/L, while in the fluorescent mode, it was able to quantitatively measure high-sensitivity CRP (hs-CRP) with a limit of detection of 0.16 mg/L. The AIENB-based LFA system also showed a good correlation with the clinically used immunoturbidimetric method for CRP and hs-CRP detection in human plasma. This dual-modal AIENB-based LFA system offers the convenience of colorimetric testing and highly sensitive and quantitative detection of disease biomarkers and medical diagnostics in various scenarios.
Collapse
Affiliation(s)
- Lingzhi Fan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Wannian Yan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Qilong Chen
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Fei Tan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yijie Tang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Huanxing Han
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Rujia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ni Xie
- AUISET Biotechnology Co., Ltd., Kwai Chung, New Territories, Hong Kong S.A.R. 000000, China
- AIEgen Biotech Co., Ltd., 28 Yee Wo Street, Causeway Bay, Hong Kong S.A.R. 000000, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhongjian Chen
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
- Shanghai Engineering Research Center for External Chinese Medicine, Shanghai 200433, China
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| |
Collapse
|
3
|
Chen Z, Ma J, Sun DW. Aggregates-based fluorescence sensing technology for food hazard detection: Principles, improvement strategies, and applications. Compr Rev Food Sci Food Saf 2023; 22:2977-3010. [PMID: 37199444 DOI: 10.1111/1541-4337.13169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
Aggregates often exhibit modified or completely new properties compared with their molecular elements, making them an extraordinarily advantageous form of materials. The fluorescence signal change characteristics resulting from molecular aggregation endow aggregates with high sensitivity and broad applicability. In molecular aggregates, the photoluminescence properties at the molecular level can be annihilated or elevated, leading to aggregation-causing quenching (ACQ) or aggregation-induced emission (AIE) effects. This change in photoluminescence properties can be intelligently introduced in food hazard detection. Recognition units can combine with the aggregate-based sensor by joining the aggregation process, endowing the sensor with the high specificity of analytes (such as mycotoxins, pathogens, and complex organic molecules). In this review, aggregation mechanisms, structural characteristics of fluorescent materials (including ACQ/AIE-activated), and their applications in food hazard detection (with/without recognition units) are summarized. Because the design of aggregate-based sensors may be influenced by the properties of their components, the sensing mechanisms of different fluorescent materials were described separately. Details of fluorescent materials, including conventional organic dyes, carbon nanomaterials, quantum dots, polymers and polymer-based nanostructures and metal nanoclusters, and recognition units, such as aptamer, antibody, molecular imprinting, and host-guest recognition, are discussed. In addition, future trends of developing aggregate-based fluorescence sensing technology in monitoring food hazards are also proposed.
Collapse
Affiliation(s)
- Zhuoyun Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Ji Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| |
Collapse
|
4
|
Wang Z, Guo Y, Xianyu Y. Applications of self-assembly strategies in immunoassays: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Zhou C, Ma J, Sun DW. Grouping illuminants by aggregation-induced emission (AIE) mechanisms for designing sensing platforms for food quality and safety inspection. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
6
|
Recent progress on lateral flow immunoassays in foodborne pathogen detection. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Abstract
Luminogens with aggregation-induced emission (AIEgens) properties have numerous broad applications in fields of chemical and biological analyses due to their exceptional photostability, excellent signal reliability, high quantum yield, and large Stokes' shift. In particular, AIEgens also bring new blood for immunoassay. Since publication of the first 2004 paper, AIEgens-based immunoassays have received significant attention because of their high sensitivity, specificity, accuracy, and reliability. However, until now, there have been no comprehensive literature reviews focused on the evolving field of AIEgens-based immunoassays. Thus, we have extensively reviewed AIEgens-based immunoassays from their basic working principles to specific applications. We focus on several fundamental elements of AIEgens-based immunoassays, including the typical structures of AIEgens, emission mechanism of AIEgens probes, function of AIEgens in immunoassays, and platform of AIEgens-based immunoassays. Then, the representative applications of AIEgens-based immunoassays in food safety, medical diagnostics, and environmental monitoring are explored. Thus, proposals on how to further improve the AIEgens-based immunoassay performance are also discussed, as well as future challenges and perspectives, aiming to provide brief and valid guidelines for choosing suitable AIEgens-based immunoassays according to specific application requirements.
Collapse
Affiliation(s)
- Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
8
|
Xu X, Guo L, Wu A, Liu L, Kuang H, Xu L, Xu C. Rapid and sensitive detection of flubendiamide in grapes and tomatoes using a colloidal gold immunochromatography assay. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1843-1854. [DOI: 10.1080/19440049.2022.2120635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Aihong Wu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Ren J, Su L, Hu H, Yin X, Xu J, Liu S, Wang J, Wang Z, Zhang D. Expanded detection range of lateral flow immunoassay endowed with a third-stage amplifier indirect probe. Food Chem 2022; 377:131920. [PMID: 34979402 DOI: 10.1016/j.foodchem.2021.131920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 11/18/2022]
Abstract
Here, a third-stage amplifier indirect probe (TsAIP) based lateral flow immunoassay (LFIA) was proposed to detect furazolidone (FZD) with Prussian blue nanoparticles (PBNPs) as carrier to label the goat anti-mouse antibody-horseradish peroxidase conjugation [GAMA(HRP)]. In this strategy, owing to the fact that one monoclonal antibody (mAb) can combine several GAMA molecules simultaneously, the indirect probe can generate primary signal amplification, then realize second-stage amplification attributing to PBNPs, and finally achieve third-stage amplification because of the conjugated HRP. The TsAIP-based LFIA shows improved performance for FZD metabolite derivative with a detection limit of 1 ng mL-1. The detection range is expanded about 2-fold compared with the original outcome. Besides, the proposed sensor could be successfully applied in food samples. This method provides a platform for broadening the detection range and application of PBNPs based LFIAs.
Collapse
Affiliation(s)
- Jing Ren
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Lihong Su
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Huilan Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jingke Xu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China.
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Wang Z, Zhao J, Xu X, Guo L, Xu L, Sun M, Hu S, Kuang H, Xu C, Li A. An Overview for the Nanoparticles-Based Quantitative Lateral Flow Assay. SMALL METHODS 2022; 6:e2101143. [PMID: 35041285 DOI: 10.1002/smtd.202101143] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Indexed: 06/14/2023]
Abstract
The development of the lateral flow assay (LFA) has received much attention in both academia and industry because of their broad applications to food safety, environmental monitoring, clinical diagnosis, and so forth. The user friendliness, low cost, and easy operation are the most attractive advantages of the LFA. In recent years, quantitative detection has become another focus of LFA development. Here, the most recent studies of quantitative LFAs are reviewed. First, the principles and corresponding formats of quantitative LFAs are introduced. In the biomaterial and nanomaterial sections, the detection, capture, and signal amplification biomolecules and the optical, fluorescent, luminescent, and magnetic labels used in LFAs are described. The invention of dedicated strip readers has drawn further interest in exploiting the better performance of LFAs. Therefore, next, the development of dedicated reader devices is described and the usefulness and specifications of these devices for LFAs are discussed. Finally, the applications of LFAs in the detection of metal ions, biotoxins, pathogenic microorganisms, veterinary drugs, and pesticides in the fields of food safety and environmental health and the detection of nucleic acids, biomarkers, and viruses in clinical analyses are summarized.
Collapse
Affiliation(s)
- Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, No. 11, Baiwanzhuang Street, Beijing, 100037, P. R. China
| |
Collapse
|
11
|
Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
|
13
|
Xiao X, Hu S, Lai X, Peng J, Lai W. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Wang Y, Yan X, Kou Q, Sun Q, Wang Y, Wu P, Yang L, Tang J, Le T. An Ultrasensitive Label-Free Fluorescent Aptasensor Platform for Detection of Sulfamethazine. Int J Nanomedicine 2021; 16:2751-2759. [PMID: 33859476 PMCID: PMC8043786 DOI: 10.2147/ijn.s307080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Sulfamethazine (SMZ) exposed in the environment can enter the human body through the food chain and pose a serious threat to human health. Therefore, it is important to develop a rapid and sensitive method for detecting SMZ in environmental samples. In order to fastly and quantitatively detect SMZ in environmental samples, we developed a label-free fluorescent aptasensor based on specific aptamer (SMZ1S) and fluorescence resonance energy transfer (FRET) between gold nanoparticles (AuNPs) and rhodamine B (RhoB). Methods In the absence of SMZ, SMZ1S was adsorbed on the surface of AuNPs, which led to dispersion of the AuNPs in high concentration saline solution, thus effectively quenching the fluorescence of RhoB. With the increase of the SMZ concentration, the specific binding of SMZ1S and SMZ led to the aggregation of AuNPs in the presence of NaCl, which reduced the quenching of RhoB fluorescence and increased the fluorescence intensity. The sensitivity and linearity curve of the label-free fluorescent aptasensor were determined with different concentrations of sulfamethazine standard solutions. The specificity of this fluorescent aptasensor was determined by replacing sulfamethazine with different antibiotics. In addition, the actual water and soil samples were spiked and recovered. Results Under optimized conditions, the proposed fluorescent aptasensor demonstrated a good linear detection of SMZ in binding buffer from 1.25 ng mL-1 to 40 ng mL-1 and the limit of detection was 0.82 ng mL-1. The spiked recoveries for SMZ were 94.4% to 108.8% with a relative standard deviation of 1.8-10.3% in water and soil samples, respectively. Conclusion The label-free fluorescent aptasensor investigated in the current study is a promising tool to detect and quantify SMZ in water and soil samples.
Collapse
Affiliation(s)
- Yarong Wang
- College of Life Science, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Xueling Yan
- College of Life Science, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Qiming Kou
- College of Life Science, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Qi Sun
- College of Life Science, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Yuexin Wang
- College of Life Science, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Ping Wu
- College of Life Science, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Lulan Yang
- College of Life Science, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Jiaming Tang
- College of Life Science, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| | - Tao Le
- College of Life Science, Chongqing Normal University, Chongqing, 401331, People's Republic of China
| |
Collapse
|
15
|
Liu Z, Meng T, Tang X, Tian R, Guan W. The Promise of Aggregation-Induced Emission Luminogens for Detecting COVID-19. Front Immunol 2021; 12:635558. [PMID: 33679789 PMCID: PMC7928409 DOI: 10.3389/fimmu.2021.635558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The long-term pandemic of coronavirus disease 2019 (COVID-19) requires sensitive and accurate diagnostic assays to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and SARS-CoV-2 antibodies in infected individuals. Currently, RNA of SARS-CoV-2 virus is mainly detected by reverse transcription-polymerase chain reaction (RT-PCR)-based nucleic acid assays, while SARS-CoV-2 antigen and antibody are identified by immunological assays. Both nucleic acid assays and immunological assays rely on the luminescence signals of specific luminescence probes for qualitative and quantitative detection. The exploration of novel luminescence probes will play a crucial role in improving the detection sensitivity of the assays. As innate probes, aggregation-induced emission (AIE) luminogens (AIEgens) exhibit negligible luminescence in the free state but enhanced luminescence in the aggregated or restricted states. Moreover, AIEgen-based nanoparticles (AIE dots) offer efficient luminescence, good biocompatibility and water solubility, and superior photostability. Both AIEgens and AIE dots have been widely used for high-performance detection of biomolecules and small molecules, chemical/biological imaging, and medical therapeutics. In this review, the availability of AIEgens and AIE dots in nucleic acid assays and immunological assays are enumerated and discussed. By building a bridge between AIE materials and COVID-19, we hope to inspire researchers to use AIE materials as a powerful weapon against COVID-19.
Collapse
Affiliation(s)
- Zongwei Liu
- Department of Respiratory Medicine, Lianyungang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Ting Meng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofang Tang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
16
|
Reliable performance of aggregation-induced emission nanoparticle-based lateral flow assay for norfloxacin detection in nine types of animal-derived food. Talanta 2020; 219:121245. [PMID: 32887136 DOI: 10.1016/j.talanta.2020.121245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022]
Abstract
The wide application of lateral flow assay (LFA) was limited by its low sensitivity and poor matric tolerance. Aggregation induced emission (AIE) materials show superior luminescence and good stability under close packing state, which may accelerate the development of LFA. However, the detection performance of the AIE-based LFA in different real samples was unclear. In this work, an AIE-LFA was established for norfloxacin (NOR) detection in nine types of animal-derived food. Results indicated that AIE-LFA had the average recovery range of 75.6%-95.1%, 78.6%-94.6%, 71.4%-112.7%, 81.7%-121.8%, 72.7%-93.5%, 79.8%-108.5%, 79.2%-109.4%, 76.3%-103.6%, and 80.6%-108.3% in pork, pig liver, fish, lamb, beef, milk, chicken, egg, and honey, respectively. The detection results of AIE-LFA were compatible with HPLC-MS/MS in detecting NOR in 135 real samples from nine types of animal-derived food. The developed AIE-LFA was sensitive and reliable for NOR detection in those real samples.
Collapse
|