1
|
Abstract
BACKGROUND Alzheimer's disease (AD) plagues 6.5 million Americans 65+, yet treatments are lacking. The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet has been developed to address the expansive impact of dementias on the general public. This systematic review evaluated the impact of the MIND diet on cognition in those with pathologies across the dementia spectrum. OBJECTIVE To evaluate the application of the MIND diet for prevention and/or treatment of dementia. METHODS PubMed was used to conduct a search using the MIND diet and terms related to cognition. Articles were excluded if they were published prior to 2018, studied a population without dementia or significant risk factors, or did not include those 65 + . The overall quality of each source was analyzed based on the cognitive test(s) used, the selection of subjects, and the sample size. RESULTS The search generated 33 papers, which yielded 11 articles after screening. Of these studies, one was conducted on those with mild cognitive impairment, one with AD, two with general dementia, and seven with at-risk individuals. All the studies found a positive correlation between adherence and some form of cognitive functioning, but results were mixed for specific cognitive domains. CONCLUSIONS These findings suggest that the MIND diet may be a useful long-term treatment option for those with various dementia pathologies. However, more research is needed on subjects with onset dementias. Additionally, there is a need for more research into the mechanisms behind the common comorbidities.
Collapse
Affiliation(s)
- Elizabeth Healy
- James Madison University, College of Health and Behavioral Studies, Harrisonburg, VA, USA
| |
Collapse
|
2
|
Doroszkiewicz J, Mroczko B. New Possibilities in the Therapeutic Approach to Alzheimer's Disease. Int J Mol Sci 2022; 23:8902. [PMID: 36012193 PMCID: PMC9409036 DOI: 10.3390/ijms23168902] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/17/2023] Open
Abstract
Despite the fact that Alzheimer's disease (AD) is the most common cause of dementia, after many years of research regarding this disease, there is no casual treatment. Regardless of the serious public health threat it poses, only five medical treatments for Alzheimer's disease have been authorized, and they only control symptoms rather than changing the course of the disease. Numerous clinical trials of single-agent therapy did not slow the development of disease or improve symptoms when compared to placebo. Evidence indicates that the pathological alterations linked to AD start many years earlier than a manifestation of the disease. In this pre-clinical period before the neurodegenerative process is established, pharmaceutical therapy might prove invaluable. Although recent findings from the testing of drugs such as aducanumab are encouraging, they should nevertheless be interpreted cautiously. Such medications may be able to delay the onset of dementia, significantly lowering the prevalence of the disease, but are still a long way from having a clinically effective disease-modifying therapy.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-269 Bialystok, Poland
| |
Collapse
|
3
|
Akıncıoğlu H, Gülçin İ. Potent Acetylcholinesterase Inhibitors: Potential Drugs for Alzheimer's Disease. Mini Rev Med Chem 2020; 20:703-715. [PMID: 31902355 DOI: 10.2174/1389557520666200103100521] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/30/2018] [Accepted: 10/19/2019] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is one of the cognitive or memory-related impairments occurring with advancing age. Since its exact mechanism is not known, the full therapy has still not been found. Acetylcholinesterase (AChE) has been reported to be a viable therapeutic target for the treatment of AD and other dementias. To this end, acetylcholinesterase inhibitors (AChEIs) are commonly used. AChE is a member of the hydrolase enzyme family. A hydrolase is an enzyme that catalyzes the hydrolysis of a chemical bond. AChE is useful for the development of novel and mechanism-based inhibitors. It has a role in the breakdown of acetylcholine (ACh) neurotransmitters, such as acetylcholinemediated neurotransmission. AChEIs are the most effective approaches to treat AD. AChE hydrolyzes ACh to acetate and choline, as an important neurotransmitter substance. Recently, Gülçin and his group explored new AChEIs. The most suggested mechanism for AD is the deficiency of ACh, which is an important neurotransmitter. In this regard, AChEIs are commonly used for the symptomatic treatment of AD. They act in different ways, such as by inhibiting AChE, protecting cells from free radical toxicity and β-amyloid-induced injury or inhibiting the release of cytokines from microglia and monocytes. This review focuses on the role of AChEIs in AD using commonly available drugs. Also, the aim of this review is to research and discuss the role of AChEIs in AD using commonly available drugs. Therefore, in our review, related topics like AD and AChEIs are highlighted. Also, the latest work related to AChEIs is compiled. In recent research studies, novel natural and synthetic AChEIs, used for AD, are quite noteworthy. These studies can be very promising in detecting potent drugs against AD.
Collapse
Affiliation(s)
- Hulya Akıncıoğlu
- Faculty of Science and Arts, Agri Ibrahim Cecen University, 04100-Agri, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240-Erzurum, Turkey
| |
Collapse
|
4
|
Lee JH, Jahrling JB, Denner L, Dineley KT. Targeting Insulin for Alzheimer’s Disease: Mechanisms, Status and Potential Directions. J Alzheimers Dis 2018; 64:S427-S453. [DOI: 10.3233/jad-179923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jung Hyun Lee
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jordan B. Jahrling
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Larry Denner
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelly T. Dineley
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
5
|
Hsiao YH, Chang CH, Gean PW. Impact of social relationships on Alzheimer's memory impairment: mechanistic studies. J Biomed Sci 2018; 25:3. [PMID: 29325565 PMCID: PMC5764000 DOI: 10.1186/s12929-018-0404-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive memory and neuronal loss culminating in cognitive impairment that not only affects a person's living ability but also becomes a society's as well as a family's economic burden. AD is the most common form of dementia in older persons. It is expected that the number of people with AD dementia will increase dramatically in the next 30 years, projecting to 75 million in 2030 and 131.5 million in 2050 worldwide. So far, no sufficient evidence is available to support that any medicine is able to prevent or reverse the progression of the disease. Early studies have shown that social environment, particularly social relationships, can affect one's behavior and mental health. A study analyzing the correlation between loneliness and risk of developing AD revealed that lonely persons had higher risk of AD compared with persons who were not lonely. On the other hand, it has been reported that we can prevent cognitive decline and delay the onset of AD if we keep mentally active and frequently participate in social activities. In this review, we focus on the impact of social behaviors on the progression of cognitive deficit in animal models of AD with a particular emphasis on a mechanistic scheme that explains how social isolation exacerbates cognitive impairment and how social interaction with conspecifics rescues AD patients' memory deficit.
Collapse
Affiliation(s)
- Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Shieh Rd, Tainan City, 701, Taiwan
| | - Chih-Hua Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Shieh Rd, Tainan City, 701, Taiwan
| | - Po-Wu Gean
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Shieh Rd, Tainan City, 701, Taiwan.
| |
Collapse
|
6
|
Hsiao YH, Hung HC, Yu YJ, Su CL, Chen SH, Gean PW. Co-housing reverses memory decline by epigenetic regulation of brain-derived neurotrophic factor expression in an animal model of Alzheimer's disease. Neurobiol Learn Mem 2017; 141:1-8. [PMID: 28274822 DOI: 10.1016/j.nlm.2017.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/26/2017] [Indexed: 01/24/2023]
Abstract
Co-housing with a company exerts profound effects on memory decline in animal model of Alzheimer's disease (AD). Recently, we found that APP/PS1 mice of 9-month-old improved their memories after co-housing with wide-type mice for 3months by increasing hippocampal brain-derived neurotrophic factor (BDNF) expression. However, the mechanism of how co-housing could induce BDNF expression remains elusive. Here we examined epigenetic changes in the mouse hippocampus that accompanied the co-housing-induced memory improvement. We found that the level of histone deacetylase 2 (HDAC2), but not that of HDAC1, was significantly lower in the memory improved mice than in the control and memory un-improved APP/PS1 mice after co-housing. Knockdown of Hdac2 resulted in a higher freezing response after co-housing. Conversely, over-expression of HDAC2 blocked co-housing-induced memory improvement. The level of Bdnf exon IV mRNA increased significantly after knockdown of Hdac2. ChIP assay revealed a decreased occupancy of HDAC2 in the promoter region of Bdnf exon IV of memory improved mice but not memory un-improved and control APP/PS1 mice. Consistently, the acetylation of histone 3 on Lys 9 (H3K9) and histone 4 on Lys12 (H4K12) increased significantly in the promoter region of Bdnf exon IV. These results suggest HDAC2 expression is reduced after co-housing resulting in a decreased occupancy of HDAC2 and increased histone H3K9 and H4K12 acetylation in the promoter region of Bdnf exon IV, leading to increased BDNF expression in the hippocampus that improves memory.
Collapse
Affiliation(s)
- Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan
| | - Hui-Chi Hung
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan
| | - Yang-Jung Yu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan
| | - Chun-Lin Su
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan
| | - Shun-Hua Chen
- Microbiology and Immunology, College of Medicine, National Cheng Kung University, Taiwan
| | - Po-Wu Gean
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Taiwan; Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng-Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
7
|
Social interaction rescues memory deficit in an animal model of Alzheimer's disease by increasing BDNF-dependent hippocampal neurogenesis. J Neurosci 2015; 34:16207-19. [PMID: 25471562 DOI: 10.1523/jneurosci.0747-14.2014] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It has been recognized that the risk of cognitive decline during aging can be reduced if one maintains strong social connections, yet the neural events underlying this beneficial effect have not been rigorously studied. Here, we show that amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic (APP/PS1) mice demonstrate improvement in memory after they are cohoused with wild-type mice. The improvement was associated with increased protein and mRNA levels of BDNF in the hippocampus. Concomitantly, the number of BrdU(+)/NeuN(+) cells in the hippocampal dentate gyrus was significantly elevated after cohousing. Methylazoxymethanol acetate, a cell proliferation blocker, markedly reduced BrdU(+) and BrdU/NeuN(+) cells and abolished the effect of social interaction. Selective ablation of mitotic neurons using diphtheria toxin (DT) and a retrovirus vector encoding DT receptor abolished the beneficial effect of cohousing. Knockdown of BDNF by shRNA transfection blocked, whereas overexpression of BDNF mimicked the memory-improving effect. A tropomyosin-related kinase B agonist, 7,8-dihydroxyflavone, occluded the effect of social interaction. These results demonstrate that increased BDNF expression and neurogenesis in the hippocampus after cohousing underlie the reversal of memory deficit in APP/PS1 mice.
Collapse
|
8
|
Insulin resistance in Alzheimer's disease. Neurobiol Dis 2014; 72 Pt A:92-103. [PMID: 25237037 DOI: 10.1016/j.nbd.2014.09.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 12/16/2022] Open
Abstract
Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD.
Collapse
|
9
|
Characterization and in vitro permeation study of microemulsions and liquid crystalline systems containing the anticholinesterase alkaloidal extract from Tabernaemontana divaricata. Int J Pharm 2013; 452:201-10. [DOI: 10.1016/j.ijpharm.2013.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/30/2013] [Accepted: 05/02/2013] [Indexed: 11/24/2022]
|
10
|
Li X, Rose SE, Montine KS, Keene CD, Montine TJ. Antagonism of neuronal prostaglandin E(2) receptor subtype 1 mitigates amyloid β neurotoxicity in vitro. J Neuroimmune Pharmacol 2012; 8:87-93. [PMID: 22718277 DOI: 10.1007/s11481-012-9380-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 06/04/2012] [Indexed: 01/28/2023]
Abstract
Multiple lines of evidence indicate that regional brain eicosanoid signaling is important in initiation and progression of neurodegenerative conditions that have neuroinflammatory pathologic component, such as AD. We hypothesized that PGE(2) receptor subtype 1 (EP1) signaling (linked to intracellular Ca(2+) release) regulates Aβ peptide neurotoxicity and tested this in two complementary in vitro models: a human neuroblastoma cell line (MC65) producing Aβ(1-40) through conditional expression of the APP C-terminal portion, and murine primary cortical neuron cultures exposed to Aβ(1-42). In MC65 cells, EP1 receptor antagonist SC-51089 reduced Aβ neurotoxicity ~50 % without altering high molecular weight Aβ immunoreactive species formation. Inositol-3-phosphate receptor antagonist 2-aminoethoxy-diphenyl borate offered similar protection. SC-51089 largely protected the neuron cultures from synthetic Aβ(1-42) neurotoxicity. Nimodipine, a Ca(2+) channel blocker, was completely neuroprotective in both models. Based on these data, we conclude that suppressing neuronal EP1 signaling may represent a promising therapeutic approach to ameliorate Aβ peptide neurotoxicity.
Collapse
Affiliation(s)
- Xianwu Li
- Department of Pathology, University of Washington, Box 359645, Seattle, WA 98104, USA.
| | | | | | | | | |
Collapse
|
11
|
Changes in educational differentials in old-age mortality in Finland and Sweden between 1971-1975 and 1996-2000. DEMOGRAPHIC RESEARCH 2012. [DOI: 10.4054/demres.2012.26.19] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Braithwaite SP, Stock JB, Lombroso PJ, Nairn AC. Protein phosphatases and Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:343-79. [PMID: 22340724 PMCID: PMC3739963 DOI: 10.1016/b978-0-12-396456-4.00012-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's Disease (AD) is characterized by progressive loss of cognitive function, linked to marked neuronal loss. Pathological hallmarks of the disease are the accumulation of the amyloid-β (Aβ) peptide in the form of amyloid plaques and the intracellular formation of neurofibrillary tangles (NFTs). Accumulating evidence supports a key role for protein phosphorylation in both the normal and pathological actions of Aβ as well as the formation of NFTs. NFTs contain hyperphosphorylated forms of the microtubule-binding protein tau, and phosphorylation of tau by several different kinases leads to its aggregation. The protein kinases involved in the generation and/or actions of tau or Aβ are viable drug targets to prevent or alleviate AD pathology. However, it has also been recognized that the protein phosphatases that reverse the actions of these protein kinases are equally important. Here, we review recent advances in our understanding of serine/threonine and tyrosine protein phosphatases in the pathology of AD.
Collapse
|
13
|
Li X, Cudaback E, Keene CD, Breyer RM, Montine TJ. Suppressed microglial E prostanoid receptor 1 signaling selectively reduces tumor necrosis factor alpha and interleukin 6 secretion from toll-like receptor 3 activation. Glia 2011; 59:569-76. [PMID: 21319223 DOI: 10.1002/glia.21125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/22/2010] [Indexed: 01/10/2023]
Abstract
Activation of innate immunity via toll-like receptors (TLRs) is associated with neurodegenerative diseases, and some effectors, like tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6), directly contribute to neurodegeneration. We tested the hypothesis that prostaglandin (PG) E(2) receptor subtype 1 (EP1) was necessary for the induction of microglial cytokines following the activation of innate immunity. Primary murine microglia had cytokine secretion by activators of TLR3 > TLR9 > TLR4 > TLR2. TLR3 activation induced early expression of cyclooxygenase 2 (COX2) and delayed expression of membranous PGE synthase and secretion of PGE(2) . Nonselective and COX2-selective inhibitors blocked TLR3 induction of TNFα and IL-6. Moreover, of the nine of twenty cytokines and chemokines induced by TLR3 activation, only TNFα and IL-6 were significantly dependent on EP1 signaling as determined using microglia from mice homozygous deficient for EP1 gene or wild-type microglia coincubated with an EP1 antagonist. These results were confirmed by blocking intracellular Ca(2+) release with 2-aminoethoxy-diphenyl borate or Xestospongin C, inhibitors of IP3 receptors. Our results show that suppression of microglial EP1 signaling achieves much of the desired effect of COX inhibitors by selectively blocking TLR3-induced microglial secretion of two major effectors of paracrine neuron damage. In combination with the ability of EP1 suppression to ameliorate excitotoxicity, these data point to blockade of EP1 as an attractive candidate therapeutic for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xianwu Li
- Department of Pathology, University of Washington, Seattle, Washington, USA.
| | | | | | | | | |
Collapse
|
14
|
Abstract
Dementia has become a common diagnosis in aging populations, and the numbers will increase in the forthcoming years. Alzheimer's disease (AD) is the most common form of dementia in the elderly, accounting for 50%-56% of cases at autopsy and in clinical series. Nowadays, the number of people affected by AD is rapidly increasing, and more than 35 million people worldwide have AD, a condition characterized by deterioration of memory and other cognitive domains, and leading to death 3-9 years after diagnosis. The number of patients with AD, the most common cause of disability in the elderly, is set to rise dramatically. Therefore, it is important for clinicians to recognize early signs and symptoms of dementia and to note potentially modifiable risk factors and early disease markers.
Collapse
Affiliation(s)
- Ahmet Turan Isik
- Department of Internal Medicine, Division of Geriatric Medicine, Gulhane School of Medicine, Ankara, Turkey.
| |
Collapse
|
15
|
Montine TJ, Sonnen JA, Milne G, Baker LD, Breitner JCS. Elevated ratio of urinary metabolites of thromboxane and prostacyclin is associated with adverse cardiovascular events in ADAPT. PLoS One 2010; 5:e9340. [PMID: 20174466 PMCID: PMC2824826 DOI: 10.1371/journal.pone.0009340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 02/02/2010] [Indexed: 11/29/2022] Open
Abstract
Results from prevention trials, including the Alzheimer's Disease Anti-inflammatory Prevention Trial (ADAPT), have fueled discussion about the cardiovascular (CV) risks associated with non-steroidal anti-inflammatory drugs (NSAIDs). We tested the hypotheses that (i) adverse CV events reported among ADAPT participants (aged 70 years and older) are associated with increased ratio of urine 11-dehydrothromboxane B2 (Tx-M) to 2′3-donor–6-keto-PGF1 (PGI-M) attributable to NSAID treatments; (ii) coincident use of aspirin (ASA) would attenuate NSAID-induced changes in Tx-M/PGI-M ratio; and (iii) use of NSAIDs and/or ASA would not alter urine or plasma concentrations of F2-isoprostanes (IsoPs), in vivo biomarkers of free radical damage. We quantified urine Tx-M and PGI-M, and urine and plasma F2-IsoPs from 315 ADAPT participants using stable isotope dilution assays with gas chromatography/mass spectrometry, and analyzed these data by randomized drug assignment and self-report compliance as well as ASA use. Adverse CV events were significantly associated with higher urine Tx-M/PGI-M ratio, which seemed to derive mainly from lowered PGI-M. Participants taking ASA alone had reduced urine Tx-M/PGI-M compared to no ASA or NSAID; however, participants taking NSAIDs plus ASA did not have reduced urine Tx-M/PGI-M ratio compared to NSAIDs alone. Neither NSAID nor ASA use altered plasma or urine F2-IsoPs. These data suggest a possible mechanism for the increased risk of CV events reported in ADAPT participants assigned to NSAIDs, and suggest that the changes in the Tx-M/PGI-M ratio was not substantively mitigated by coincident use of ASA in individuals 70 years or older.
Collapse
Affiliation(s)
- Thomas J Montine
- Department of Pathology, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | |
Collapse
|
16
|
Calderón-Garcidueñas L, Mora-Tiscareño A, Gómez-Garza G, Carrasco-Portugal MDC, Pérez-Guillé B, Flores-Murrieta FJ, Pérez-Guillé G, Osnaya N, Juárez-Olguín H, Monroy ME, Monroy S, González-Maciel A, Reynoso-Robles R, Villarreal-Calderon R, Patel SA, Kumarathasan P, Vincent R, Henríquez-Roldán C, Torres-Jardón R, Maronpot RR. Effects of a cyclooxygenase-2 preferential inhibitor in young healthy dogs exposed to air pollution: a pilot study. Toxicol Pathol 2009; 37:644-60. [PMID: 19638440 DOI: 10.1177/0192623309340277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Residency in cities with high air pollution is associated with neuroinflammation and neurodegeneration in healthy children, young adults, and dogs. Nonsteroidal anti-inflammatory drugs may offer neuroprotection. The authors measured the plasma concentrations of 3-nitrotyrosine and the cerebro-spinal-fluid concentrations of prostaglandin E2 metabolite and the oligomeric form of amyloid derived diffusible ligand; measured the mRNA expression of cyclooxygenase-2, interleukin 1beta, CD14, and Aquaporin-4 in target brain areas; and evaluated brain MRI, cognition, and neuropathology in 8 dogs treated with a preferential cyclooxygenase-2 inhibitor (Nimesulide) versus 7 untreated litter-matched Mexico City dogs. Nimesulide significantly decreased nitrotyrosine in plasma (p < .0001), frontal gray IL1beta (p = .03), and heart IL1beta (p = .02). No effect was seen in mRNA COX2, amyloid, and PGE2 in CSF or the MRI white matter lesions. All exposed dogs exhibited olfactory bulb and frontal accumulation of Abeta(42) in neurons and blood vessels and frontal vascular subcortical pathology. White matter hyperintense MRI frontal lesions were seen in 4/6 non-treated and 6/8 treated dogs. Nonsteroidal anti-inflammatory drugs may offer limited neuroprotection in the setting of severe air pollution exposures. The search for potentially beneficial drugs useful to ameliorate the brain effects of pollution represents an enormous clinical challenge.
Collapse
|
17
|
Abstract
This review discusses evidence-based perspectives on the relationship between dyslipidemia and cognitive decline, including strategic implications for risk reduction in primary care and empirically driven public policy initiatives to prevent cognitive dysfunction.
Collapse
Affiliation(s)
- Lisa Terre
- Department of Psychology, University of Missouri-Kansas City,
| |
Collapse
|
18
|
Dietary patterns associated with Alzheimer's disease: population based study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 6:1335-40. [PMID: 19440521 PMCID: PMC2681193 DOI: 10.3390/ijerph6041335] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 03/23/2009] [Indexed: 11/17/2022]
Abstract
Recently dietary pattern analysis has emerged as a way for examining diet-disease relations in Alzheimer’s disease. In contrast with the conventional approach, which focuses on a single nutrient or a few nutrients or foods, this method considers overall eating patterns. We examined the dietary patterns defined by factor analysis using data collected with a food-frequency questionnaire in people with Alzheimer’s disease (AD) as compared to healthy controls. The diet data were obtained during population based study of the prevalence of Alzheimer’s disease in a population in Poland. Stratified sampling and random selection strategies were combined to obtain a representative population for screening (age group > 55). From the population screened three times, 71 people were diagnosed with Alzheimer’s according to DSM-IV, and were recruited for further diet risk factors assessment. A group of people with Alzheimer disease (n = 71; F/M 42/29) and the same number of healthy, age and gender matched control were recruited for the study. Patients and their caregivers as well as controls were presented with a food frequency questionnaire based on the 12 food groups. Factor analysis (principal component) was used to derive food patterns. The analysis was conducted using the factor procedure. The factors were rotated by an orthogonal transformation (Varimax rotation) to achieve simpler structure with greater interpretability. Using factor analysis, we identified major eating patterns, one for Alzheimer’s patients and a different one for control group. The AD dietary pattern, FACTOR AD was characterized by a high intake of meat, butter, high-fat dairy products, eggs, and refined sugar, whereas the other pattern, (FACTOR C) was characterized by a high intake of grains and vegetables. These data indicate the existence of dietary patterns defined by factor analysis with data from a food frequency questionnaire, characteristic for Alzheimer’s disease in a Polish population.
Collapse
|
19
|
Sachdev PS. Dementia prevention: the discordance between observational and intervention studies and the search for more evidence. Early Interv Psychiatry 2009; 3:80-2. [PMID: 21352179 DOI: 10.1111/j.1751-7893.2008.00109.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Coley N, Andrieu S, Gardette V, Gillette-Guyonnet S, Sanz C, Vellas B, Grand A. Dementia Prevention: Methodological Explanations for Inconsistent Results. Epidemiol Rev 2008; 30:35-66. [PMID: 18779228 DOI: 10.1093/epirev/mxn010] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|