1
|
Maier A, Bailey T, Hinrichs A, Lerchl S, Newman RT, Fournier C, Vandevoorde C. Experimental Setups for In Vitro Studies on Radon Exposure in Mammalian Cells-A Critical Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095670. [PMID: 37174189 PMCID: PMC10178159 DOI: 10.3390/ijerph20095670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Naturally occurring radon and its short lived progeny are the second leading cause of lung cancer after smoking, and the main risk factor for non-smokers. The radon progeny, mainly Polonium-218 (218Po) and Polonium-214 (214Po), are responsible for the highest dose deposition in the bronchial epithelium via alpha-decay. These alpha-particles release a large amount of energy over a short penetration range, which results in severe and complex DNA damage. In order to unravel the underlying biological mechanisms which are triggered by this complex DNA damage and eventually give rise to carcinogenesis, in vitro radiobiology experiments on mammalian cells have been performed using radon exposure setups, or radon analogues, which mimic alpha-particle exposure. This review provides an overview of the different experimental setups, which have been developed and used over the past decades for in vitro radon experiments. In order to guarantee reliable results, the design and dosimetry of these setups require careful consideration, which will be emphasized in this work. Results of these in vitro experiments, particularly on bronchial epithelial cells, can provide valuable information on biomarkers, which can assist to identify exposures, as well as to study the effects of localized high dose depositions and the heterogeneous dose distribution of radon.
Collapse
Affiliation(s)
- Andreas Maier
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Tarryn Bailey
- Department of Physics, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, NRF-iThemba LABS, Cape Town 7129, South Africa
| | - Annika Hinrichs
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Physics Department, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Sylvie Lerchl
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Richard T Newman
- Department of Physics, Stellenbosch University, Stellenbosch, Cape Town 7600, South Africa
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, NRF-iThemba LABS, Cape Town 7129, South Africa
| |
Collapse
|
2
|
Madas BG, Boei J, Fenske N, Hofmann W, Mezquita L. Effects of spatial variation in dose delivery: what can we learn from radon-related lung cancer studies? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:561-577. [PMID: 36208308 PMCID: PMC9630403 DOI: 10.1007/s00411-022-00998-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 05/14/2023]
Abstract
Exposure to radon progeny results in heterogeneous dose distributions in many different spatial scales. The aim of this review is to provide an overview on the state of the art in epidemiology, clinical observations, cell biology, dosimetry, and modelling related to radon exposure and its association with lung cancer, along with priorities for future research. Particular attention is paid on the effects of spatial variation in dose delivery within the organs, a factor not considered in radiation protection. It is concluded that a multidisciplinary approach is required to improve risk assessment and mechanistic understanding of carcinogenesis related to radon exposure. To achieve these goals, important steps would be to clarify whether radon can cause other diseases than lung cancer, and to investigate radon-related health risks in children or persons at young ages. Also, a better understanding of the combined effects of radon and smoking is needed, which can be achieved by integrating epidemiological, clinical, pathological, and molecular oncology data to obtain a radon-associated signature. While in vitro models derived from primary human bronchial epithelial cells can help to identify new and corroborate existing biomarkers, they also allow to study the effects of heterogeneous dose distributions including the effects of locally high doses. These novel approaches can provide valuable input and validation data for mathematical models for risk assessment. These models can be applied to quantitatively translate the knowledge obtained from radon exposure to other exposures resulting in heterogeneous dose distributions within an organ to support radiation protection in general.
Collapse
Affiliation(s)
- Balázs G Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary.
| | - Jan Boei
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nora Fenske
- Federal Office for Radiation Protection, Munich (Neuherberg), Germany
| | - Werner Hofmann
- Biological Physics, Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomic and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| |
Collapse
|
3
|
Hofmann W, Li WB, Friedland W, Miller BW, Madas B, Bardiès M, Balásházy I. Internal microdosimetry of alpha-emitting radionuclides. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:29-62. [PMID: 31863162 PMCID: PMC7012986 DOI: 10.1007/s00411-019-00826-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/08/2019] [Indexed: 05/27/2023]
Abstract
At the tissue level, energy deposition in cells is determined by the microdistribution of alpha-emitting radionuclides in relation to sensitive target cells. Furthermore, the highly localized energy deposition of alpha particle tracks and the limited range of alpha particles in tissue produce a highly inhomogeneous energy deposition in traversed cell nuclei. Thus, energy deposition in cell nuclei in a given tissue is characterized by the probability of alpha particle hits and, in the case of a hit, by the energy deposited there. In classical microdosimetry, the randomness of energy deposition in cellular sites is described by a stochastic quantity, the specific energy, which approximates the macroscopic dose for a sufficiently large number of energy deposition events. Typical examples of the alpha-emitting radionuclides in internal microdosimetry are radon progeny and plutonium in the lungs, plutonium and americium in bones, and radium in targeted radionuclide therapy. Several microdosimetric approaches have been proposed to relate specific energy distributions to radiobiological effects, such as hit-related concepts, LET and track length-based models, effect-specific interpretations of specific energy distributions, such as the dual radiation action theory or the hit-size effectiveness function, and finally track structure models. Since microdosimetry characterizes only the initial step of energy deposition, microdosimetric concepts are most successful in exposure situations where biological effects are dominated by energy deposition, but not by subsequently operating biological mechanisms. Indeed, the simulation of the combined action of physical and biological factors may eventually require the application of track structure models at the nanometer scale.
Collapse
Affiliation(s)
- Werner Hofmann
- Biological Physics, Department of Chemistry and Physics of Materials, University of Salzburg, Hellbrunner Str. 34, 5020, Salzburg, Austria.
| | - Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| | - Werner Friedland
- Institute of Radiation Medicine, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Brian W Miller
- Department of Radiation Oncology, School of Medicine, University of Colorado, Aurora, CO, 80045, USA
- College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Balázs Madas
- Environmental Physics Department, MTA Centre for Energy Research, Budapest, Hungary
| | - Manuel Bardiès
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, INSERM Université Paul Sabatier, Toulouse, France
| | - Imre Balásházy
- Environmental Physics Department, MTA Centre for Energy Research, Budapest, Hungary
| |
Collapse
|
4
|
Drozsdik EJ, Madas BG. QUANTITATIVE ANALYSIS OF THE POTENTIAL ROLE OF BASAL CELL HYPERPLASIA IN THE RELATIONSHIP BETWEEN CLONAL EXPANSION AND RADON CONCENTRATION. RADIATION PROTECTION DOSIMETRY 2019; 183:237-241. [PMID: 30668805 DOI: 10.1093/rpd/ncy302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 05/27/2023]
Abstract
Applying the two-stage clonal expansion model to epidemiology of lung cancer among uranium miners, it has been revealed that radon acts as a promoting agent facilitating the clonal expansion of already mutated cells. Clonal expansion rate increases non-linearly by radon concentration showing a plateau above a given exposure rate. The underlying mechanisms remain unclear. Earlier we proposed that progenitor cell hyperplasia may be induced upon chronic radon exposure. The objective of the present study is to test whether the induction of hyperplasia may provide a quantitative explanation for the plateau in clonal expansion rate. For this purpose, computational epithelium models were prepared with different number of basal cells. Cell nucleus hits were computed by an own-developed Monte-Carlo code. Surviving fractions were estimated based on the number of cell nucleus hits. Cell division rate was computed supposing equilibrium between cell death and cell division. It was also supposed that clonal expansion rate is proportional to cell division rate, and therefore the relative increase in cell division rate and clonal expansion rate are the same functions of exposure rate. While the simulation results highly depend on model parameters with high uncertainty, a parameter set has been found resulting in a cell division rate-exposure rate relationship corresponding to the plateau in clonal expansion rate. Due to the high uncertainty of the applied parameters, however, further studies are required to decide whether the induction of hyperplasia is responsible for the non-linear increase in clonal expansion rate or not. Nevertheless, the present study exemplifies how computational modelling can contribute to the integration of observational and experimental radiation protection research.
Collapse
Affiliation(s)
- Emese J Drozsdik
- Department of Biological Physics, Doctoral School of Physics, ELTE Eötvös Loránd University, Budapest, Hungary
- Radiation Biophysics Group, Environmental Physics Department, MTA Centre for Energy Research, Budapest, Hungary
| | - Balázs G Madas
- Radiation Biophysics Group, Environmental Physics Department, MTA Centre for Energy Research, Budapest, Hungary
| |
Collapse
|
5
|
Madas B, Drozsdik E. Radon induced hyperplasia may provide an explanation for inverse exposure rate effect. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191405005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|