1
|
Malo ME, Frank C, Khokhoev E, Gorbunov A, Dontsov A, Garg R, Dadachova E. Mitigating effects of sublethal and lethal whole-body gamma irradiation in a mouse model with soluble melanin. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:011508. [PMID: 35037901 DOI: 10.1088/1361-6498/ac3dcf] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/25/2021] [Indexed: 05/27/2023]
Abstract
The field of radiation countermeasures is growing, however, currently there are no effective and non-toxic compounds which could be administered orally to the individuals post exposure to high doses of ionising radiation. The pigment melanin is ubiquitous through all kingdoms of life and provides selective advantage under radiation stress through its role as a chemical and physical shield, and its capacity to respond and react to exposures. Soluble allomelanin was administered to mice following whole-body exposure to lethal or sublethal doses of gamma radiation to determine its capacity to mitigate the effects of acute radiation syndrome, and its utility as a radiation countermeasure. Allomelanin has shown a trend to improve survival post an 8 Gy sublethal radiation exposure when administered up to 48 h post-irradiation. Furthermore, it improved median and overall survival to a 10 Gy lethal radiation exposure, specifically when administered at 24 h post-irradiation. Histological analysis on the jejunum region of the small intestine of this treatment group indicated that alterations of the mucosal and submucosal architecture, and disruption of the lymphatic system associated with lethal radiation exposure were mitigated when allomelanin was administered at 24 h post-irradiation. Based on this work soluble allomelanin derived from a fungal source could serve as an easily sourced, cost-effective, and viable countermeasure to accidental radiation exposure and merits further investigation.
Collapse
Affiliation(s)
- Mackenzie E Malo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Connor Frank
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | | | | | - Alexander Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Science, Moscow, Russia
| | - Ravendra Garg
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
2
|
Garrett L, Ung MC, Einicke J, Zimprich A, Fenzl F, Pawliczek D, Graw J, Dalke C, Hölter SM. Complex Long-term Effects of Radiation on Adult Mouse Behavior. Radiat Res 2021; 197:67-77. [PMID: 34237145 DOI: 10.1667/rade-20-00281.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/24/2021] [Indexed: 11/03/2022]
Abstract
We have shown previously that a single radiation event (0.063, 0.125 or 0.5 Gy, 0.063 Gy/min) in adult mice (age 10 weeks) can have delayed dose-dependent effects on locomotor behavior 18 months postirradiation. The highest dose (0.5 Gy) reduced, whereas the lowest dose (0.063 Gy) increased locomotor activity at older age independent of sex or genotype. In the current study we investigated whether higher doses administered at a higher dose rate (0.5, 1 or 2 Gy, 0.3 Gy/min) at the same age (10 weeks) cause stronger or earlier effects on a range of behaviors, including locomotion, anxiety, sensorimotor and cognitive behavior. There were clear dose-dependent effects on spontaneous locomotor and exploratory activity, anxiety-related behavior, body weight and affiliative social behavior independent of sex or genotype of wild-type and Ercc2S737P heterozygous mice on a mixed C57BL/6JG and C3HeB/FeJ background. In addition, smaller genotype- and dose-dependent radiation effects on working memory were evident in males, but not in females. The strongest dose-dependent radiation effects were present 4 months postirradiation, but only effects on affiliative social behaviors persisted until 12 months postirradiation. The observed radiation-induced behavioral changes were not related to alterations in the eye lens, as 4 months postirradiation anterior and posterior parts of the lens were still normal. Overall, we did not find any sensitizing effect of the mutation towards radiation effects in vivo.
Collapse
Affiliation(s)
- Lillian Garrett
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marie-Claire Ung
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Jan Einicke
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Annemarie Zimprich
- Technical University Munich, School of Life Science Weihenstephan, Freising, Germany
| | - Felix Fenzl
- Technical University Munich, School of Life Science Weihenstephan, Freising, Germany
| | - Daniel Pawliczek
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Jochen Graw
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Claudia Dalke
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Sabine M Hölter
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany.,Technical University Munich, School of Life Science Weihenstephan, Freising, Germany
| |
Collapse
|
3
|
Ung MC, Garrett L, Dalke C, Leitner V, Dragosa D, Hladik D, Neff F, Wagner F, Zitzelsberger H, Miller G, de Angelis MH, Rößler U, Vogt Weisenhorn D, Wurst W, Graw J, Hölter SM. Dose-dependent long-term effects of a single radiation event on behaviour and glial cells. Int J Radiat Biol 2020; 97:156-169. [PMID: 33264576 DOI: 10.1080/09553002.2021.1857455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The increasing use of low-dose ionizing radiation in medicine requires a systematic study of its long-term effects on the brain, behaviour and its possible association with neurodegenerative disease vulnerability. Therefore, we analysed the long-term effects of a single low-dose irradiation exposure at 10 weeks of age compared to medium and higher doses on locomotor, emotion-related and sensorimotor behaviour in mice as well as on hippocampal glial cell populations. MATERIALS AND METHODS We determined the influence of radiation dose (0, 0.063, 0.125 or 0.5 Gy), time post-irradiation (4, 12 and 18 months p.i.), sex and genotype (wild type versus mice with Ercc2 DNA repair gene point mutation) on behaviour. RESULTS The high dose (0.5 Gy) had early-onset adverse effects at 4 months p.i. on sensorimotor recruitment and late-onset negative locomotor effects at 12 and 18 months p.i. Notably, the low dose (0.063 Gy) produced no early effects but subtle late-onset (18 months) protective effects on sensorimotor recruitment and exploratory behaviour. Quantification and morphological characterization of the microglial and the astrocytic cells of the dentate gyrus 24 months p.i. indicated heightened immune activity after high dose irradiation (0.125 and 0.5 Gy) while conversely, low dose (0.063 Gy) induced more neuroprotective features. CONCLUSION This is one of the first studies demonstrating such long-term and late-onset effects on brain and behaviour after a single radiation event in adulthood.
Collapse
Affiliation(s)
- Marie-Claire Ung
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Institute of Pathology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Lillian Garrett
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | | | - Daniel Dragosa
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Daniela Hladik
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Florian Wagner
- Institute of Radiation Medicine, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Gregor Miller
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Martin Hrabĕ de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Department of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ute Rößler
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, Neuherberg, Germany
| | - Daniela Vogt Weisenhorn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Chair of Developmental Genetics, Faculty of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Sabine M Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany.,Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|