1
|
Li S, Qi M, Yang Q, Shi F, Liu C, Du J, Sun Y, Li C, Dong B. State-of-the-Art on the Sulfate Radical-Advanced Oxidation Coupled with Nanomaterials: Biological and Environmental Applications. J Funct Biomater 2022; 13:jfb13040227. [PMID: 36412867 PMCID: PMC9680365 DOI: 10.3390/jfb13040227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Sulfate radicals (SO4-·) play important biological roles in biomedical and environmental engineering, such as antimicrobial, antitumor, and disinfection. Compared with other common free radicals, it has the advantages of a longer half-life and higher oxidation potential, which could bring unexpected effects. These properties have prompted researchers to make great contributions to biology and environmental engineering by exploiting their properties. Peroxymonosulfate (PMS) and peroxydisulfate (PDS) are the main raw materials for SO4-· formation. Due to the remarkable progress in nanotechnology, a large number of nanomaterials have been explored that can efficiently activate PMS/PDS, which have been used to generate SO4-· for biological applications. Based on the superior properties and application potential of SO4-·, it is of great significance to review its chemical mechanism, biological effect, and application field. Therefore, in this review, we summarize the latest design of nanomaterials that can effectually activate PMS/PDS to create SO4-·, including metal-based nanomaterials, metal-free nanomaterials, and nanocomposites. Furthermore, we discuss the underlying mechanism of the activation of PMS/PDS using these nanomaterials and the application of SO4-· in the fields of environmental remediation and biomedicine, liberating the application potential of SO4-·. Finally, this review provides the existing problems and prospects of nanomaterials being used to generate SO4-· in the future, providing new ideas and possibilities for the development of biomedicine and environmental remediation.
Collapse
Affiliation(s)
- Sijia Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Qijing Yang
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Fangyu Shi
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Juanrui Du
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Yue Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Correspondence: (Y.S.); (C.L.); (B.D.)
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Correspondence: (Y.S.); (C.L.); (B.D.)
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- Correspondence: (Y.S.); (C.L.); (B.D.)
| |
Collapse
|
2
|
Tang M, Zhang Y. Enhancing the activation of persulfate using nitrogen-doped carbon materials in the electric field for the effective removal of p-nitrophenol. RSC Adv 2021; 11:38003-38015. [PMID: 35498075 PMCID: PMC9044045 DOI: 10.1039/d1ra06691a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Degradation of nonbiodegradable organic compounds into harmless substances is one of the main challenges in environmental protection. Electrically-activated persulfate process has served as an efficient advanced oxidation process (AOP) to degrade organic compounds. In this study, we synthesized three nitrogen-doped carbon materials, namely, nitrogen-doped activated carbon plus graphene (NC), and nitrogen-doped activated carbon (NAC), nitrogen-doped graphene (NGE), and three nitrogen-doped carbon material-graphite felt (GF) cathodes. The three nitrogen-doped carbon materials (NC, NGE, NAC) were characterized using X-ray diffraction, Raman spectroscopy, X-ray electron spectroscopy, and nitrogen desorption-adsorption. The electron spin resonance technique was used to identify the presence of hydroxyl radicals (˙OH), sulfate radicals (SO4˙-) and singlet oxygen (1O2) species. The results showed that NC was more conducive for the production of free radicals. In addition, we applied NC-GF to an electro-activated persulfate system with the degradation of p-nitrophenol and investigated its performance for contaminant degradation under different conditions. In general, the nitrogen-doped carbon electrode electro-activated persulfate process is a promising way to treat organic pollutants in wastewater.
Collapse
Affiliation(s)
- Mengdi Tang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 China
- School of Environmental Science and Engineering, Tiangong University Tianjin 300387 China
| | - Yonggang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University Tianjin 300387 China
- School of Environmental Science and Engineering, Tiangong University Tianjin 300387 China
| |
Collapse
|