1
|
Alvarado-Gutiérrez ML, Ruiz-Ordaz N, Galíndez-Mayer J, Santoyo-Tepole F, García-Mena J, Nirmalkar K, Curiel-Quesada E. Dynamic and structural response of a multispecies biofilm to environmental perturbations induced by the continuous increase of benzimidazole fungicides in a permeable reactive biobarrier. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:329-344. [PMID: 38887762 PMCID: PMC11180048 DOI: 10.1007/s40201-024-00903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/21/2024] [Indexed: 06/20/2024]
Abstract
Purpose This work explores the dynamics of spatiotemporal changes in the taxonomic structure of biofilms and the degradation kinetics of three imidazole group compounds: carbendazim (CBZ), methyl thiophanate (MT), and benomyl (BN) by a multispecies microbial community attached to a fixed bed horizontal tubular reactor (HTR). This bioreactor mimics a permeable reactive biobarrier, which helps prevent the contamination of water bodies by pesticides in agricultural wastewater. Methods To rapidly quantify the microbial response to crescent loading rates of benzimidazole compounds, a gradient system was used to transiently raise the fungicide volumetric loading rates, measuring the structural and functional dynamics response of a microbial community in terms of the volumetric removal rates of the HTR entering pollutants. Results The loading rate gradient of benzimidazole compounds severely impacts the spatiotemporal taxonomic structure of the HTR biofilm-forming microbial community. Notable differences with the original structure in HTR stable conditions can be noted after three historical contingencies (CBZ, MT, and BN gradient loading rates). It was evidenced that the microbial community did not return to the composition prior to environmental disturbances; however, the functional similarity of microbial communities after steady state reestablishment was observed. Conclusions The usefulness of the method of gradual delivery of potentially toxic agents for a microbial community immobilized in a tubular biofilm reactor was shown since its functional and structural dynamics were quickly evaluated in response to fungicide composition and concentration changes. The rapid adjustment of the contaminants' removal rates indicates that even with changes in the taxonomic structure of a microbial community, its functional redundancy favors its adjustment to gradual environmental disturbances.
Collapse
Affiliation(s)
- María Luisa Alvarado-Gutiérrez
- Department of Biochemical Engineering, National School of Biological Sciences, Adolfo López Mateos Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Nora Ruiz-Ordaz
- Department of Biochemical Engineering, National School of Biological Sciences, Adolfo López Mateos Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Juvencio Galíndez-Mayer
- Department of Biochemical Engineering, National School of Biological Sciences, Adolfo López Mateos Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Fortunata Santoyo-Tepole
- Spectroscopy Instrumentation Center, National School of Biological Sciences, Lázaro Cárdenas Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Jaime García-Mena
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| | - Khemlal Nirmalkar
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Instituto Politécnico Nacional), México, México
- Present Address: Biodesign Center for Health Through Microbiomes, Arizona State University, Arizona, USA
| | - Everardo Curiel-Quesada
- Biochemistry Department. National School of Biological Sciences, Lázaro Cárdenas Professional Unit, National Polytechnic Institute (Instituto Politécnico Nacional), México, México
| |
Collapse
|
2
|
Srivastava V, Boczkaj G, Lassi U. An Overview of Treatment Approaches for Octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) Explosive in Soil, Groundwater, and Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15948. [PMID: 36498024 PMCID: PMC9737503 DOI: 10.3390/ijerph192315948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) is extensively exploited in the manufacturing of explosives; therefore, a significant level of HMX contamination can be encountered near explosive production plants. For instance, up to 12 ppm HMX concentrations have been observed in the wastewater effluent of a munitions manufacturing facility, while up to 45,000 mg/kg of HMX has been found in a soil sample taken from a location close to a high-explosive production site. Owing to their immense demand for a variety of applications, the large-scale production of explosives has culminated in severe environmental issues. Soil and water contaminated with HMX can pose a detrimental impact on flora and fauna and hence, remediation of HMX is paramount. There is a rising demand to establish a sustainable technology for HMX abatement. Physiochemical and bioremediation approaches have been employed to treat HMX in the soil, groundwater, and wastewater. It has been revealed that treatment methods such as photo-peroxidation and photo-Fenton oxidation can eliminate approximately 98% of HMX from wastewater. Fenton's reagents were found to be very effective at mineralizing HMX. In the photocatalytic degradation of HMX, approximately 59% TOC removal was achieved by using a TiO2 photocatalyst, and a dextrose co-substrate was used in a bioremediation approach to accomplish 98.5% HMX degradation under anaerobic conditions. However, each technology has some pros and cons which need to be taken into consideration when choosing an HMX remediation approach. In this review, various physiochemical and bioremediation approaches are considered and the mechanism of HMX degradation is discussed. Further, the advantages and disadvantages of the technologies are also discussed along with the challenges of HMX treatment technologies, thus giving an overview of the HMX remediation strategies.
Collapse
Affiliation(s)
- Varsha Srivastava
- Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, FI-90014 Oulu, Finland
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
- EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Ulla Lassi
- Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
3
|
2,4,6-trinitrotoluene (TNT) degradation by Indiicoccus explosivorum (S5-TSA-19). Arch Microbiol 2022; 204:447. [PMID: 35778571 DOI: 10.1007/s00203-022-03057-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/05/2022] [Indexed: 11/02/2022]
Abstract
2,4,6-trinitrotoluene (TNT), a nitro-aromatic explosive commonly used for defense and several non-violent applications is contributing to serious environmental pollution problems including human health. The current study investigated the remediation potential of a native soil isolate, i.e., Indiicoccus explosivorum (strain S5-TSA-19) isolated from collected samples of an explosive manufacturing site, against TNT. The survivability of I. explosivorum against explosives is indirectly justified through its isolation; thus, it is being chosen for further study. At a TNT concentration of 120 mg/L within an optimized environment (i.e., at 30 °C and 120 rpm), the isolate was continually incubated for 30 days in a minimal salt medium (MSM). The proliferation of the isolate and the concentration of TNT, nitrate, nitrite, and ammonium ion were evaluated at a particular time during the experiment. Within 168 h (i.e., 7 days) of incubation, I. explosivorum co-metabolically degraded 100% TNT. The biodegradation procedure succeeded the first-order kinetics mechanism. Formations of additional metabolites like 2,4-dinitrotoluene (DNT), 2,4-diamino-6-nitrotoluene (2-DANT), and 2-amino-4,6-dinitrotoluene (2-ADNT), were also witnessed. TNT seems to be non-toxic for the isolate, as it reproduced admirably in TNT presence. To date, it is the first report of Indiicoccus explosivorum, efficiently bio-remediating TNT, i.e., a nitro-aromatic compound via different degradation pathways, leading to the production of simpler as well as less harmful end products. Further, at the field-scale application, Indiicoccus explosivorum may be explored for the bioremediation of TNT (i.e., a nitro-aromatic compound)-contaminated effluents.
Collapse
|
4
|
Mary Celin S, Sharma B, Bhanot P, Kalsi A, Sahai S, Tanwar RK. Trends in environmental monitoring of high explosives present in soil/sediment/groundwater using LC-MS/MS. MASS SPECTROMETRY REVIEWS 2022:e21778. [PMID: 35657034 DOI: 10.1002/mas.21778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination by explosives occurs due to improper handling and disposal procedures. Explosives and their transformation products pose threat to human health and the ecosystem. Trace level detection of explosives present in different environmental matrices is a challenge, due to the interference caused by matrix components and the presence of cocontaminants. Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) is an advanced analytical tool, which is ideal for quantitative and qualitative detection of explosives and its metabolites at trace levels. This review aims to showcase the current trends in the application of LC-MS/MS for detecting explosives present in soil, sediment, and groundwater with detection limits ranging from nano to femtogram levels. Specificity and advantages of using LC-MS/MS over conventional analytical methods and various processing methods and techniques used for sample preparation are discussed in this article. Important application aspects of LC-MS/MS on environmental monitoring include site characterization and degradation evaluation. Studies on qualitative and quantitative LC-MS/MS analysis in determining the efficiency of treatment processes and contamination mapping, optimized conditions of LC and MS/MS adopted, role of different ionization techniques and mass analyzers in detection of explosives and its metabolites, relative abundance of various product ions formed on dissociation and the levels of detection achieved are reviewed. Ionization suppression, matrix effect, additive selection are some of the major factors which influence MS/MS detection. A summary of challenges and future research insights for effective utilization of this technique in the environmental monitoring of explosives are presented.
Collapse
Affiliation(s)
- Senthil Mary Celin
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Bhumika Sharma
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Pallvi Bhanot
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Anchita Kalsi
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Sandeep Sahai
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| | - Rajesh Kumar Tanwar
- Modelling Simulation and Explosive Safety research Group (MS&ESRG), Centre for Fire Explosive and Environment Safety (CFEES), DRDO, Delhi, India
| |
Collapse
|
5
|
Lamba J, Anand S, Dutta J, Chatterjee S, Nagar S, Celin SM, Rai PK. Study on aerobic degradation of 2,4,6-trinitrotoluene (TNT) using Pseudarthrobacter chlorophenolicus collected from the contaminated site. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:80. [PMID: 33486600 DOI: 10.1007/s10661-021-08869-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
2,4,6-trinitrotoluene or TNT, a commonly used explosive, can pollute soil and groundwater. Conventional remediation practices for the TNT-contaminated sites are neither eco-friendly nor cost-effective. However, exploring bacteria to biodegrade TNT into environment-friendly compound(s) is an interesting area to explore. In this study, an indigenous bacterium, Pseudarthrobacter chlorophenolicus, strain S5-TSA-26, isolated from explosive contaminated soil, was investigated for potential aerobic degradation of TNT for the first time. The isolated strain of P. chlorophenolicus was incubated in a minimal salt medium (MSM) containing 120 mg/L TNT for 25 days at specified conditions. TNT degradation pattern by the bacterium was monitored at regular interval using UV-Vis spectrophotometry, high-performance liquid chromatography, and liquid chromatography mass spectrophotometric, by estimating nitrate, nitrite, and ammonium ion concentration and other metabolites such as 2,4-dinitrotoluene (DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), and 2,4-diamino-6-nitrotoluene (2-DANT). It was observed that, in the presence of TNT, there was no reduction in growth of the bacterium although it multiplied well in the presence of TNT along with no considerable morphological changes. Furthermore, it was found that TNT degraded completely within 15 days of incubation. Thus, from this study, it may be concluded that the bacterium has the potential for degrading TNT completely with the production of non-toxic by-products and might be an important bacterium for treating TNT (i.e., a nitro-aromatic compound)-contaminated sites.
Collapse
Affiliation(s)
- Jyoti Lamba
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
| | - Shalini Anand
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India.
| | - Jayanti Dutta
- Human Resource Development Centre, Panjab University, Chandigarh, 160 014, India
| | - Soumya Chatterjee
- Defence Research Laboratory, Defence Research and Development Organisation, Tezpur, Assam, 784 001, India
| | - Shilpi Nagar
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
- Department of Environmental Studies, University of Delhi, Delhi, 110 007, India
| | - S Mary Celin
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
| | - Pramod Kumar Rai
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research and Development Organisation (DRDO), Timarpur, Delhi, 110054, India
| |
Collapse
|
6
|
Sharma K, Sharma P, Celin SM, Rai PK, Sangwan P. Degradation of high energetic material hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a microbial consortium using response surface methodological approach. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04021-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AbstractSoil and water get polluted with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) during its manufacturing, storage and use for civil and military purposes. RDX has toxic effects on living and non-living environment and is a recalcitrant compound. Therefore, the remediation of this compound is necessary. Microbial degradation of RDX can be a suitable and sustainable option to reduce its deleterious impact on the environment. Therefore, the optimization for degradation of energetic munition compound RDX employing the consortium of native bacterial species, isolated from an actual contaminated site, was performed. The experiment was planned with three independent variables (initial RDX concentration, inoculum size of microbes, and duration of the experiment) and three dependent variables (percentage removal of RDX, optical density, and nitrite release). Both independent and dependent variables were analyzed by the response surface methodology (RSM) using the Box–Behnken design. The statistical analysis using analysis of variance (ANOVA) depicted a high regression coefficient, R2 = 0.9881 with the statistically significant p-value fitted into a quadratic regression model for percentage removal of RDX. Results showed an initial RDX concentration of 40 mg/L, inoculation size 6 mL and a time duration of 12 days was optimal for the reduction of RDX up to 80.4%.
Collapse
|