1
|
Narmashiri A, Akbari F. The Effects of Transcranial Direct Current Stimulation (tDCS) on the Cognitive Functions: A Systematic Review and Meta-analysis. Neuropsychol Rev 2025; 35:126-152. [PMID: 38060075 DOI: 10.1007/s11065-023-09627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Previous studies have investigated the effect of transcranial direct current stimulation (tDCS) on cognitive functions. However, these studies reported inconsistent results due to differences in experiment design, measurements, and stimulation parameters. Nonetheless, there is a lack of meta-analyses and review studies on tDCS and its impact on cognitive functions, including working memory, inhibition, flexibility, and theory of mind. We performed a systematic review and meta-analysis of tDCS studies published from the earliest available data up to October 2021, including studies reporting the effects of tDCS on cognitive functions in human populations. Therefore, these systematic review and meta-analysis aim to comprehensively analyze the effects of anodal and cathodal tDCS on cognitive functions by investigating 69 articles with a total of 5545 participants. Our study reveals significant anodal tDCS effects on various cognitive functions. Specifically, we observed improvements in working memory reaction time (RT), inhibition RT, flexibility RT, theory of mind RT, working memory accuracy, theory of mind accuracy and flexibility accuracy. Furthermore, our findings demonstrate noteworthy cathodal tDCS effects, enhancing working memory accuracy, inhibition accuracy, flexibility RT, flexibility accuracy, theory of mind RT, and theory of mind accuracy. Notably, regarding the influence of stimulation parameters of tDCS on cognitive functions, the results indicated significant differences across various aspects, including the timing of stimulation (online vs. offline studies), population type (clinical vs. healthy studies), stimulation duration (< 15 min vs. > 15 min), electrical current intensities (1-1.5 m.A vs. > 1.5 m.A), stimulation sites (right frontal vs. left frontal studies), age groups (young vs. older studies), and different cognitive tasks in each cognitive functioning aspect. In conclusion, our results demonstrate that tDCS can effectively enhance cognitive task performance, offering valuable insights into the potential benefits of this method for cognitive improvement.
Collapse
Affiliation(s)
- Abdolvahed Narmashiri
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
- Electrical Engineering Department, Bio-Intelligence Research Unit, Sharif Brain Center, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
2
|
Eliason M, Kalbande PP, Saleem GT. Is non-invasive neuromodulation a viable technique to improve neuroplasticity in individuals with acquired brain injury? A review. Front Hum Neurosci 2024; 18:1341707. [PMID: 39296918 PMCID: PMC11408216 DOI: 10.3389/fnhum.2024.1341707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/22/2024] [Indexed: 09/21/2024] Open
Abstract
Objective This study aimed to explore and evaluate the efficacy of non-invasive brain stimulation (NIBS) as a standalone or coupled intervention and understand its mechanisms to produce positive alterations in neuroplasticity and behavioral outcomes after acquired brain injury (ABI). Data sources Cochrane Library, Web of Science, PubMed, and Google Scholar databases were searched from January 2013 to January 2024. Study selection Using the PICO framework, transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) randomized controlled trials (RCTs), retrospective, pilot, open-label, and observational large group and single-participant case studies were included. Two authors reviewed articles according to pre-established inclusion criteria. Data extraction Data related to participant and intervention characteristics, mechanisms of change, methods, and outcomes were extracted by two authors. The two authors performed quality assessments using SORT. Results Twenty-two studies involving 657 participants diagnosed with ABIs were included. Two studies reported that NIBS was ineffective in producing positive alterations or behavioral outcomes. Twenty studies reported at least one, or a combination of, positively altered neuroplasticity and improved neuropsychological, neuropsychiatric, motor, or somatic symptoms. Twenty-eight current articles between 2020 and 2024 have been studied to elucidate potential mechanisms of change related to NIBS and other mediating or confounding variables. Discussion tDCS and TMS may be efficacious as standalone interventions or coupled with neurorehabilitation therapies to positively alter maladaptive brain physiology and improve behavioral symptomology resulting from ABI. Based on postintervention and follow-up results, evidence suggests NIBS may offer a direct or mediatory contribution to improving behavioral outcomes post-ABI. Conclusion More research is needed to better understand the extent of rTMS and tDCS application in affecting changes in symptoms after ABI.
Collapse
Affiliation(s)
- Michelle Eliason
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| | | | - Ghazala T Saleem
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
3
|
Flores-Sandoval C, Teasell R, MacKenzie HM, McIntyre A, Barua U, Mehta S, Bayley M, Bateman EA. Evidence-Based Review of Randomized Controlled Trials of Interventions for Mental Health Management Post-Moderate to Severe Traumatic Brain Injury. J Head Trauma Rehabil 2024; 39:342-358. [PMID: 39256156 DOI: 10.1097/htr.0000000000000984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
OBJECTIVE To present an evidence-based review of randomized controlled trials (RCTs) evaluating interventions for mental health post-moderate to severe traumatic brain injury (post-MSTBI), as part of an extensive database that has been conceptualized as a living systematic review. METHODS Systematic searches were conducted for RCTs published in the English language in MEDLINE, PubMed, Scopus, CINAHL, EMBASE, and PsycINFO, up to and including December 2022, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The methodological quality of RCTs was assessed using the Physiotherapy Evidence Database scale, and the level of evidence was assigned using a modified Sackett scale. RESULTS Eighty-seven RCTs examining mental health interventions and outcome measures post-MSTBI were included. These studies collectively enrolled 6471 participants. A total of 41 RCTs (47.1%) were conducted in the United States and 56 studies (64.4%) were published after 2010. A total of 62 RCTs (71.3%) examined nonpharmacological interventions and 25 RCTs (28.7%) examined pharmacological interventions. Effective pharmacological treatments included desipramine and cerebrolysin; methylphenidate and rivastigmine showed conflicting evidence. Cognitive behavioral therapy (CBT) was found to be effective for hopelessness, stress, and anxiety, compared to usual care; however, it may be as effective as supportive psychotherapy for depression. CBT combined with motivational interviewing may be as effective as CBT combined with nondirective counseling for depression, stress, and anxiety. Acceptance and commitment therapy was effective for anxiety, stress, and depression. Tai Chi, dance, and walking appeared to be effective for depression and stress, while other nonpharmacological treatments such as peer mentoring showed limited effectiveness. CONCLUSION This evidence-based review provides a comprehensive overview of the research landscape of RCTs addressing mental health post-MSTBI. The findings from these RCTs may be valuable for health care professionals, researchers, and policymakers involved in the field of mental health and neurorehabilitation.
Collapse
Affiliation(s)
- Cecilia Flores-Sandoval
- Author Affiliations: Parkwood Institute Research, Lawson Health Research Institute (Drs Flores-Sandoval, Teasell, and MacKenzie, Ms Barua, and Drs Mehta and Bateman); Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario (Drs Teasell, MacKenzie, Mehta, and Bateman); Parkwood Institute, St. Joseph's Health Care London, London, Ontario (Drs Bateman, Teasell, and MacKenzie); Arthur Family Labatt School of Nursing, Faculty of Health Sciences, Western University, London, Ontario (Dr McIntyre); Division of Physical Medicine and Rehabilitation, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, KITE Research Institute, University Health Network, Toronto, Ontario, and University Health Network, Toronto Rehabilitation Institute, Toronto, Ontario (Dr Bayley)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Wender CLA, Ray LN, Sandroff BM, Krch D. Exercise as a behavioral approach to improve mood in persons with traumatic brain injury. PM R 2024; 16:919-931. [PMID: 37874561 DOI: 10.1002/pmrj.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/12/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Mood disturbance is a common, long-term, negative consequence of traumatic brain injury (TBI) that is insufficiently addressed by most traditional treatment modalities. A large body of evidence supports the efficacy of exercise training (ET) to broadly improve mood, as measured most often by the Profile of Mood States (POMS). However, this behavioral approach is not used nearly enough in the TBI population, and when it is, mood is rarely measured. This scoping review will evaluate the use of POMS as a mood measure in TBI research and to establish a rationale for using ET as a behavioral approach to broadly improve mood in persons with TBI.
Collapse
Affiliation(s)
- Carly L A Wender
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers-NJ Medical School, Newark, New Jersey, USA
| | - LaShawnna N Ray
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Brian M Sandroff
- Department of Physical Medicine and Rehabilitation, Rutgers-NJ Medical School, Newark, New Jersey, USA
- Center for Neuropsychology & Neuroscience Research, Kessler Foundation, West Orange, New Jersey, USA
| | - Denise Krch
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers-NJ Medical School, Newark, New Jersey, USA
| |
Collapse
|
5
|
Chang CH, Chou PH, Chuang HY, Yao CY, Chen WJ, Tsai HC. Efficacy of Non-Invasive Brain Stimulation for Treating Depression in Patients with Traumatic Brain Injury: A Meta-Analysis and Meta-Regression of Randomized Controlled Trials. J Clin Med 2023; 12:6030. [PMID: 37762970 PMCID: PMC10531948 DOI: 10.3390/jcm12186030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE This meta-analysis aimed to ascertain the efficacy of non-invasive brain stimulation (NIBS)-comprising repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS)-for depression in traumatic brain injury (TBI) patients. METHODS Comprehensive searches were conducted in PubMed, Cochrane Database of Systematic Reviews, and the Cochrane Central Register of Controlled Trials up to 28 January 2023. Random-effects models assessed the treatment effects, and heterogeneity was evaluated through I2 statistics and funnel plot inspection. RESULTS From 10 trials (234 participants; 8 rTMS, 2 tDCS), NIBS was found significantly more effective than sham in alleviating depressive symptoms (SMD: 0.588, 95% CI: 0.264-0.912; p < 0.001). rTMS, specifically, showed higher efficacy (SMD: 0.707, 95% CI: 0.306-1.108; p = 0.001) compared to sham, whereas tDCS outcomes were inconclusive (SMD: 0.271, 95% CI: -0.230 to 0.771; p = 0.289). Meta-regression found no correlation with the number of sessions, treatment intensity, or total dose. Notably, while post-treatment effects were significant, they diminished 1-2 months post intervention. Adverse events associated with NIBS were minimal, with no severe outcomes like seizures and suicide reported. CONCLUSIONS rTMS emerged as a potent short-term intervention for depression in TBI patients, while tDCS findings remained equivocal. The long-term efficacy of NIBS is yet to be established, warranting further studies. The low adverse event rate reaffirms NIBS's potential safety.
Collapse
Affiliation(s)
- Chun-Hung Chang
- Institute of Clinical Medical Science, China Medical University, Taichung 406040, Taiwan;
- Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung 404327, Taiwan
- An Nan Hospital, China Medical University, Tainan 709204, Taiwan; (C.-Y.Y.); (W.-J.C.)
| | - Po-Han Chou
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu 302056, Taiwan
- Department of Psychiatry, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan
| | - Hao-Yu Chuang
- Department of Neurosurgery, An Nan Hospital, China Medical University, Tainan 709204, Taiwan;
| | - Chi-Yu Yao
- An Nan Hospital, China Medical University, Tainan 709204, Taiwan; (C.-Y.Y.); (W.-J.C.)
| | - Wei-Jen Chen
- An Nan Hospital, China Medical University, Tainan 709204, Taiwan; (C.-Y.Y.); (W.-J.C.)
| | - Hsin-Chi Tsai
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien 970473, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970473, Taiwan
| |
Collapse
|
6
|
Cordeiro BNDL, Kuster E, Thibaut A, Rodrigues Nascimento L, Gonçalves JV, Arêas GPT, Paiva WS, Arêas FZDS. Is transcranial direct current stimulation (tDCS) effective to improve cognition and functionality after severe traumatic brain injury? A perspective article and hypothesis. Front Hum Neurosci 2023; 17:1162854. [PMID: 37635806 PMCID: PMC10448524 DOI: 10.3389/fnhum.2023.1162854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Severe traumatic brain injury (sTBI) is an important cause of disability and mortality and affects people of all ages. Current scientific evidence indicates that motor dysfunction and cognitive impairment are the main limiting factors in patients with sTBI. Transcranial direct current stimulation (tDCS) seems to be a good therapeutic option, but when it comes to patients with sTBI, the results are inconclusive, and some protocols have not yet been tested. In addition, there is still a lack of information on tDCS-related physiological mechanisms, especially during the acute phase. In the present study, based on current evidence on tDCS mechanisms of action, we hypothesized that performing tDCS sessions in individuals with sTBI, especially in the acute and subacute phases, together with conventional therapy sessions, could improve cognition and motor function in this population. This hypothesis presents a new possibility for treating sTBI, seeking to elucidate the extent to which early tDCS may affect long-term clinical outcomes.
Collapse
Affiliation(s)
| | - Elizângela Kuster
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Lucas Rodrigues Nascimento
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo, Vitória, Brazil
- Laboratory of Neurorehabilitation and Neuromodulation, Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Jessica Vaz Gonçalves
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | | | - Fernando Zanela da Silva Arêas
- Center of Health Sciences, Discipline of Physical Therapy, Universidade Federal do Espírito Santo, Vitória, Brazil
- Laboratory of Neurorehabilitation and Neuromodulation, Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
7
|
Schwertfeger JL, Beyer C, Hung P, Ung N, Madigan C, Cortes AR, Swaminathan B, Madhavan S. A map of evidence using transcranial direct current stimulation (tDCS) to improve cognition in adults with traumatic brain injury (TBI). FRONTIERS IN NEUROERGONOMICS 2023; 4:1170473. [PMID: 38234478 PMCID: PMC10790940 DOI: 10.3389/fnrgo.2023.1170473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 01/19/2024]
Abstract
Introduction Cognition impairments often occur after a traumatic brain injury and occur at higher rates in military members. Cognitive symptoms impair daily function, including balance and life quality, years after the TBI. Current treatments to regain cognitive function after TBI, including medications and cognitive rehabilitation, have shown limited effectiveness. Transcranial direct current stimulation (tDCS) is a low-cost, non-invasive brain stimulation intervention that improves cognitive function in healthy adults and people with neuropsychologic diagnoses beyond current interventions. Despite the available evidence of the effectiveness of tDCS in improving cognition generally, only two small TBI trials have been conducted based on the most recent systematic review of tDCS effectiveness for cognition following neurological impairment. We found no tDCS studies that addressed TBI-related balance impairments. Methods A scoping review using a peer-reviewed search of eight databases was completed in July 2022. Two assessors completed a multi-step review and completed data extraction on included studies using a priori items recommended in tDCS and TBI research guidelines. Results A total of 399 results were reviewed for inclusion and 12 met the criteria and had data extracted from them by two assessors using Google Forms. Consensus on combined data results included a third assessor when needed. No studies using tDCS for cognition-related balance were found. Discussion Guidelines and technology measures increase the identification of brain differences that alter tDCS effects on cognition. People with mild-severe and acute-chronic TBI tolerated and benefited from tDCS. TBI-related cognition is understudied, and systematic research that incorporates recommended data elements is needed to advance tDCS interventions to improve cognition after TBI weeks to years after injury.
Collapse
Affiliation(s)
- Julie Lynn Schwertfeger
- Captain James A. Lovell Federal Health Care Center, United States Department of Veteran Affairs, North Chicago, IL, United States
- Clinical Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Charlotte Beyer
- Department of Foundational Sciences and Humanities, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Paul Hung
- Captain James A. Lovell Federal Health Care Center, United States Department of Veteran Affairs, North Chicago, IL, United States
- Psychiatry Residency Program, Clinical Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Nathaniel Ung
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Caroline Madigan
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Alvi Renzyl Cortes
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Bharathi Swaminathan
- Physical Medicine and Rehabilitation, Captain James A. Lovell Federal health Care Center, North Chicago, IL, United States
- PM&R Residency Program, Clinical Medicine, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Sangeetha Madhavan
- Rehabilitation Sciences Program, and Physical Therapy Program, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
INCOG 2.0 Guidelines for Cognitive Rehabilitation Following Traumatic Brain Injury, Part V: Memory. J Head Trauma Rehabil 2023; 38:83-102. [PMID: 36594861 DOI: 10.1097/htr.0000000000000837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Memory impairments affecting encoding, acquisition, and retrieval of information after moderate-to-severe traumatic brain injury (TBI) have debilitating and enduring functional consequences. The interventional research reviewed primarily focused on mild to severe memory impairments in episodic and prospective memory. As memory is a common focus of cognitive rehabilitation, clinicians should understand and use the latest evidence. Therefore, the INCOG ("International Cognitive") 2014 clinical practice guidelines were updated. METHODS An expert panel of clinicians/researchers reviewed evidence published since 2014 and developed updated recommendations for intervention for memory impairments post-TBI, a decision-making algorithm, and an audit tool for review of clinical practice. RESULTS The interventional research approaches for episodic and prospective memory from 2014 are synthesized into 8 recommendations (6 updated and 2 new). Six recommendations are based on level A evidence and 2 on level B. In summary, they include the efficacy of choosing individual or multiple internal compensatory strategies, which can be delivered in a structured or individualized program. Of the external compensatory strategies, which should be the primary strategy for severe memory impairment, electronic reminder systems such as smartphone technology are preferred, with technological advances increasing their viability over traditional systems. Furthermore, microprompting personal digital assistant technology is recommended to cue completion of complex tasks. Memory strategies should be taught using instruction that considers the individual's functional and contextual needs while constraining errors. Memory rehabilitation programs can be delivered in an individualized or mixed format using group instruction. Computer cognitive training should be conducted with therapist guidance. Limited evidence exists to suggest that acetylcholinesterase inhibitors improve memory, so trials should include measures to assess impact. The use of transcranial direct current stimulation (tDCS) is not recommended for memory rehabilitation. CONCLUSION These recommendations for memory rehabilitation post-TBI reflect the current evidence and highlight the limitations of group instruction with heterogeneous populations of TBI. Further research is needed on the role of medications and tDCS to enhance memory.
Collapse
|
9
|
INCOG 2.0 Guidelines for Cognitive Rehabilitation Following Traumatic Brain Injury, Part II: Attention and Information Processing Speed. J Head Trauma Rehabil 2023; 38:38-51. [PMID: 36594858 DOI: 10.1097/htr.0000000000000839] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Moderate to severe traumatic brain injury (MS-TBI) commonly causes disruption in aspects of attention due to its diffuse nature and injury to frontotemporal and midbrain reticular activating systems. Attentional impairments are a common focus of cognitive rehabilitation, and increased awareness of evidence is needed to facilitate informed clinical practice. METHODS An expert panel of clinicians/researchers (known as INCOG) reviewed evidence published from 2014 and developed updated guidelines for the management of attention in adults, as well as a decision-making algorithm, and an audit tool for review of clinical practice. RESULTS This update incorporated 27 studies and made 11 recommendations. Two new recommendations regarding transcranial stimulation and an herbal supplement were made. Five were updated from INCOG 2014 and 4 were unchanged. The team recommends screening for and addressing factors contributing to attentional problems, including hearing, vision, fatigue, sleep-wake disturbance, anxiety, depression, pain, substance use, and medication. Metacognitive strategy training focused on everyday activities is recommended for individuals with mild-moderate attentional impairments. Practice on de-contextualized computer-based attentional tasks is not recommended because of lack of evidence of generalization, but direct training on everyday tasks, including dual tasks or dealing with background noise, may lead to gains for performance of those tasks. Potential usefulness of environmental modifications is also discussed. There is insufficient evidence to support mindfulness-based meditation, periodic alerting, or noninvasive brain stimulation for alleviating attentional impairments. Of pharmacological interventions, methylphenidate is recommended to improve information processing speed. Amantadine may facilitate arousal in comatose or vegetative patients but does not enhance performance on attentional measures over the longer term. The antioxidant Chinese herbal supplement MLC901 (NeuroAiD IITM) may enhance selective attention in individuals with mild-moderate TBI. CONCLUSION Evidence for interventions to improve attention after TBI is slowly growing. However, more controlled trials are needed, especially evaluating behavioral or nonpharmacological interventions for attention.
Collapse
|
10
|
Guideline of clinical neurorestorative treatment for brain trauma (2022 China version). JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Caulfield KA, Indahlastari A, Nissim NR, Lopez JW, Fleischmann HH, Woods AJ, George MS. Electric Field Strength From Prefrontal Transcranial Direct Current Stimulation Determines Degree of Working Memory Response: A Potential Application of Reverse-Calculation Modeling? Neuromodulation 2022; 25:578-587. [PMID: 35670064 DOI: 10.1111/ner.13342] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) for working memory is an enticing treatment, but there is mixed evidence to date. OBJECTIVES We tested the effects of electric field strength from uniform 2 mA dosing on working memory change from prestimulation to poststimulation. Second, we statistically evaluated a reverse-calculation method of individualizing tDCS dose and its effect on normalizing electric field at the cortex. MATERIALS AND METHODS We performed electric field modeling on a data set of 28 healthy older adults (15 women, mean age = 73.7, SD = 7.3) who received ten sessions of active 2 mA tDCS (N = 14) or sham tDCS (N = 14) applied over bilateral dorsolateral prefrontal cortices (DLPFC) in a triple-blind design. We evaluated the relationship between electric field strength and working memory change on an N-back task in conditions of above-median, high electric field from active 2 mA (N = 7), below-median, low electric field from active 2 mA (N = 7), and sham (N = 14) at regions of interest (ROI) at the left and right DLPFC. We then determined the individualized reverse-calculation dose to produce the group average electric field and measured the electric field variance between uniform 2 mA doses vs individualized reverse-calculation doses at the same ROIs. RESULTS Working memory improvements from pre- to post-tDCS were significant for the above-median electric field from active 2 mA condition at the left DLPFC (mixed ANOVA, p = 0.013). Furthermore, reverse-calculation modeling significantly reduced electric field variance at both ROIs (Levene's test; p < 0.001). CONCLUSIONS Higher electric fields at the left DLPFC from uniform 2 mA doses appear to drive working memory improvements from tDCS. Individualized doses from reverse-calculation modeling significantly reduce electric field variance at the cortex. Taken together, using reverse-calculation modeling to produce the same, high electric fields at the cortex across participants may produce more effective future tDCS treatments for working memory.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Nicole R Nissim
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - James W Lopez
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Holly H Fleischmann
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Mark S George
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
12
|
Nousia A, Martzoukou M, Liampas I, Siokas V, Bakirtzis C, Nasios G, Dardiotis E. The Effectiveness of Non-Invasive Brain Stimulation Alone or Combined with Cognitive Training on the Cognitive Performance of Patients With Traumatic Brain Injury: Α Systematic Review. Arch Clin Neuropsychol 2021; 37:497-512. [PMID: 34155517 DOI: 10.1093/arclin/acab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The present study reviewed published evidence on the effectiveness of non-invasive brain stimulation (NIBS) on the cognitive performance of patients with Traumatic brain injury (TBI). METHOD A systematic search of the PubMed and Google Scholar databases was carried out. Randomized Controlled Studies published before March 2020 were included. Methodological evaluation was performed based on the Risk of Bias Cochrane tool. A total of 10 placebo-controlled studies fulfilled the inclusion criteria and were involved in the qualitative analysis, two assessing NIBS combined with cognitive training (CT) and eight evaluating NIBS alone. RESULTS All but one retrieved article were appraised as of high-risk of bias (one paper was assessed as of unclear-risk owing to considerable underreporting). With the potential exception of attention, our findings were not indicative of a superior efficacy of NIBS-CT to CT alone, regarding the improvement of any of the rest assessed cognitive deficits. Executive function, processing speed, attention, working, and visuospatial memory were only occasionally found to benefit from NIBS alone compared to sham therapy (only one study reported relevant benefits per neuropsychological outcome). Verbal memory and verbal fluency (phonemic-semantic) were consistently found not to benefit from NIBS. Depression measures were the only outcomes associated with a beneficial effect of NIBS in more than one article. CONCLUSION Our findings did not provide sufficient high-quality evidence to support the exclusive use of NIBS or combined NIBS-CT to improve any impaired cognitive function in TBI patients. Owing to the suboptimum methodological quality of published studies, additional research is of potential value.
Collapse
Affiliation(s)
- Anastasia Nousia
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| | - Maria Martzoukou
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| | - Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, Greece.,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, Greece.,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Bakirtzis
- B' Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Grigorios Nasios
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, Greece.,Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|