1
|
Osumi M, Sumitani M, Iwatsuki K, Hoshiyama M, Imai R, Morioka S, Hirata H. Resting-state Electroencephalography Microstates Correlate with Pain Intensity in Patients with Complex Regional Pain Syndrome. Clin EEG Neurosci 2024; 55:121-129. [PMID: 37844609 DOI: 10.1177/15500594231204174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Objective: Severe pain and other symptoms in complex regional pain syndrome (CRPS), such as allodynia and hyperalgesia, are associated with abnormal resting-state brain network activity. No studies to date have examined resting-state brain networks in CRPS patients using electroencephalography (EEG), which can clarify the temporal dynamics of brain networks. Methods: We conducted microstate analysis using resting-state EEG signals to prospectively reveal direct correlations with pain intensity in CRPS patients (n = 17). Five microstate topographies were fitted back to individual CRPS patients' EEG data, and temporal microstate measures were subsequently calculated. Results: Our results revealed five distinct microstates, termed microstates A to E, from resting EEG data in patients with CRPS. Microstates C, D and E were significantly correlated with pain intensity before pain treatment. Particularly, microstates D and E were significantly improved together with pain alleviation after pain treatment. As microstates D and E in the present study have previously been related to attentional networks and the default mode network, improvement in these networks might be related to pain relief in CRPS patients. Conclusions: The functional alterations of these brain networks affected the pain intensity of CRPS patients. Therefore, EEG microstate analyses may be used to identify surrogate markers for pain intensity.
Collapse
Affiliation(s)
- Michihiro Osumi
- Graduate School of Health Science, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
- Neurorehabilitation Research Center, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital. 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Katsuyuki Iwatsuki
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Minoru Hoshiyama
- Department of Health Sciences, Faculty of Medicine, Nagoya University, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, Aichi, Japan
| | - Ryota Imai
- School of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka, Osaka, Japan
| | - Shu Morioka
- Graduate School of Health Science, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
- Neurorehabilitation Research Center, Kio University. 4-2-2 Umaminaka, Kitakatsuragigun, Nara, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Farron N, Clarke S, Crottaz-Herbette S. Does hand modulate the reshaping of the attentional system during rightward prism adaptation? An fMRI study. Front Psychol 2022; 13:909815. [PMID: 35967619 PMCID: PMC9363778 DOI: 10.3389/fpsyg.2022.909815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Adaptation to right-deviating prisms (R-PA), that is, learning to point with the right hand to targets perceived through prisms, has been shown to change spatial topography within the inferior parietal lobule (IPL) by increasing responses to left, central, and right targets on the left hemisphere and decreasing responses to right and central targets on the right hemisphere. As pointed out previously, this corresponds to a switch of the dominance of the ventral attentional network from the right to the left hemisphere. Since the encoding of hand movements in pointing paradigms is side-dependent, the choice of right vs. left hand for pointing during R-PA may influence the visuomotor adaptation process and hence the reshaping of the attentional system. We have tested this hypothesis in normal subjects by comparing activation patterns to visual targets in left, central, and right fields elicited before and after adaptation to rightward-deviating prisms using the right hand (RWRH) with those in two control groups. The first control group underwent adaptation to rightward-deviating prisms using the left hand, whereas the second control group underwent adaptation to leftward-deviating prisms using the right hand. The present study confirmed the previously described enhancement of left and central visual field representation within left IPL following R-PA. It further showed that the use of right vs. left hand during adaptation modulates this enhancement in some but not all parts of the left IPL. Interestingly, in some clusters identified in this study, L-PA with right hand mimics partially the effect of R-PA by enhancing activation elicited by left stimuli in the left IPL and by decreasing activation elicited by right stimuli in the right IPL. Thus, the use of right vs. left hand modulates the R-PA-induced reshaping of the ventral attentional system. Whether the choice of hand during R-PA affects also the reshaping of the dorsal attentional system remains to be determined as well as possible clinical applications of this approach. Depending on the patients' conditions, using the right or the left hand during PA might potentiate the beneficial effects of this intervention.
Collapse
|
3
|
Vittersø AD, Halicka M, Buckingham G, Proulx MJ, Bultitude JH. The sensorimotor theory of pathological pain revisited. Neurosci Biobehav Rev 2022; 139:104735. [PMID: 35705110 DOI: 10.1016/j.neubiorev.2022.104735] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 01/31/2023]
Abstract
Harris (1999) proposed that pain can arise in the absence of tissue damage because changes in the cortical representation of the painful body part lead to incongruences between motor intention and sensory feedback. This idea, subsequently termed the sensorimotor theory of pain, has formed the basis for novel treatments for pathological pain. Here we review the evidence that people with pathological pain have changes to processes contributing to sensorimotor function: motor function, sensory feedback, cognitive representations of the body and its surrounding space, multisensory processing, and sensorimotor integration. Changes to sensorimotor processing are most evident in the form of motor deficits, sensory changes, and body representations distortions, and for Complex Regional Pain Syndrome (CRPS), fibromyalgia, and low back pain. Many sensorimotor changes are related to cortical processing, pain, and other clinical characteristics. However, there is very limited evidence that changes in sensorimotor processing actually lead to pain. We therefore propose that the theory is more appropriate for understanding why pain persists rather than how it arises.
Collapse
Affiliation(s)
- Axel D Vittersø
- Centre for Pain Research, University of Bath, Bath, Somerset, United Kingdom; Department of Psychology, University of Bath, Bath, Somerset, United Kingdom; Department of Sport & Health Sciences, University of Exeter, Exeter, Devon, United Kingdom; Department of Psychology, Oslo New University College, Oslo, Norway.
| | - Monika Halicka
- Centre for Pain Research, University of Bath, Bath, Somerset, United Kingdom; Department of Psychology, University of Bath, Bath, Somerset, United Kingdom
| | - Gavin Buckingham
- Department of Sport & Health Sciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Michael J Proulx
- Department of Psychology, University of Bath, Bath, Somerset, United Kingdom; Centre for Real and Virtual Environments Augmentation Labs, Department of Computer Science, University of Bath, Bath, Somerset, United Kingdom
| | - Janet H Bultitude
- Centre for Pain Research, University of Bath, Bath, Somerset, United Kingdom; Department of Psychology, University of Bath, Bath, Somerset, United Kingdom
| |
Collapse
|
4
|
Epinat-Duclos J, Foncelle A, Quesque F, Chabanat E, Duguet A, Van der Henst JB, Rossetti Y. Does nonviolent communication education improve empathy in French medical students? INTERNATIONAL JOURNAL OF MEDICAL EDUCATION 2021; 12:205-218. [PMID: 34716989 PMCID: PMC8994647 DOI: 10.5116/ijme.615e.c507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To evaluate the impact of nonviolent communication (NVC) training on five aspects of medical students' empathy skills using implicit and explicit measures. METHODS 312 third-year French medical students were randomly allocated to an intervention group (n = 123) or a control group (n = 189). The intervention group received 2.5 days of NVC training. For each group, empathy-related skills were measured implicitly using three cognitive tests (Visuo-Spatial Perspective Taking, Privileged Knowledge, Empathy for Pain evaluation) and explicitly using two self-rating questionnaires (Jefferson Scale of Physician Empathy, Empathy Quotient). Both groups completed tests and questionnaires before (pre-test) and three months after training (post-test). Responses were collected via online software, and data were analyzed using paired linear mixed models and Bayes Factors. RESULTS We found a significant increase in the Jefferson Scale of Physician Empathy (JSPE) score between pre- and post-tests in the intervention group compared to the control group (linear mixed models: 0.95 points [0.17, 1.73], t(158) = 2.39, p < 0.05), and an expected gender effect whereby females had higher JSPE scores (1.57 points [0.72, 2.42], t(262) = -3.62, p < 0.001). There was no interaction between these two factors. CONCLUSIONS Our results show that brief training in nonviolent communication improves subjective empathy three months after training. These results are promising for the long-term effectiveness of NVC training on medical students' empathy and call for the introduction of NVC training in medical school. Further studies should investigate whether longer training will produce larger and longer-lasting benefits.
Collapse
Affiliation(s)
- Justine Epinat-Duclos
- TRAJECTOIRES Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, France
| | - Alexandre Foncelle
- TRAJECTOIRES Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, France
| | - François Quesque
- TRAJECTOIRES Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, France
| | - Eric Chabanat
- TRAJECTOIRES Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, France
| | - Alexandre Duguet
- AP-HP-Sorbonne University INSERM, MRSU 1158, Faculty of Medicine Sorbonne University, Paris, France
| | - Jean-Baptiste Van der Henst
- TRAJECTOIRES Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, France
| | - Yves Rossetti
- TRAJECTOIRES Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, France
| |
Collapse
|