1
|
Hooshmandi H, Ghadiri-Anari A, Ranjbar AM, Fallahzadeh H, Hosseinzadeh M, Nadjarzadeh A. Effects of licorice extract in combination with a low-calorie diet on obesity indices, glycemic indices, and lipid profiles in overweight/obese women with polycystic ovary syndrome (PCOS): a randomized, double-blind, placebo-controlled trial. J Ovarian Res 2024; 17:157. [PMID: 39080737 PMCID: PMC11287987 DOI: 10.1186/s13048-024-01446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/29/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common ovarian dysfunction. Recent studies showed the effectiveness of licorice on metabolic profiles with inconsistent findings. So, we investigated the effect of licorice on obesity indices, glycemic indices, and lipid profiles in women with PCOS. METHODS This randomized, double-blind, placebo-controlled trial was performed on 66 overweight/obese women with PCOS. The participants were randomly assigned to receive either 1.5 gr/day licorice extract plus a low-calorie diet (n = 33) or placebo plus a low-calorie diet (n = 33) for 8 weeks. Participants' anthropometric indices and body composition were assessed using standard protocols. Fasting blood sugar (FBS), insulin levels, low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), and high-density lipoprotein-cholesterol (HDL-C) were measured using enzymatic kits. The homeostasis model assessment-insulin resistance (HOMA-IR) and HOMA of β-cell function (HOMA-B) were calculated using valid formulas. RESULTS Between-group comparisons demonstrated significant differences between the groups in terms of obesity indices (body weight, BMI, and body fat), lipid profiles (TG, TC, LDL-C, and HDL-C), FBS and insulin levels, HOMA-IR, and HOMA-B at the end of the study (P < 0.05). Supplementation with licorice plus a low-calorie diet was also more effective in improving all parameters than a low-calorie diet alone after adjusting for confounders (baseline values, age, weight changes, and physical activity changes) (P < 0.05). CONCLUSION The findings showed that licorice consumption leads to improvements in obesity indices, glucose homeostasis, and lipid profiles compared to placebo. Due to possible limitations of the study, further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Hadis Hooshmandi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Ghadiri-Anari
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Mohammad Ranjbar
- Department of Pharmacognosy, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Herbal Medicine Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non-Communicable Disease, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azadeh Nadjarzadeh
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Montaser O, El-Aasr M, Tawfik HO, Meshrif WS, Elbrense H. Drosophila melanogaster as a model organism for diabetes II treatment by the ethyl acetate fraction of Atriplex halimus L. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:702-716. [PMID: 38623920 DOI: 10.1002/jez.2812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Type 2 diabetes (T2D) is the most common metabolic disorder. The undesirable effects of synthetic drugs demand a search for safe antidiabetic agents. This study aimed to assess the antidiabetic activity of different fractions of Atriplex halimus (petroleum ether 60-80, methylene chloride, ethyl acetate, and n-butanol) using Drosophila melanogaster larvae. Titers of total glucose and trehalose, as well as larval weight, were measured and compared with those of control and diabetic larvae. The expression of Drosophila insulin-like peptides (DILP2 and DILP3) and adipokinetic hormone (AKH) was evaluated. The results revealed a significant increase in total glucose, trehalose, and a decrease in body weight in the larvae fed a high-sugar diet compared with those in the control. When larvae fed diets containing the tested fractions, the total glucose and trehalose decreased to the control level, and the body weight increased. DILP2, DILP3, and AKH exhibited significant decreases upon treatment with A. halimus ethyl acetate. Metabolomic profiling of the ethyl acetate fraction of A. halimus revealed the presence of flavonoids and flavonoid glycosides. After docking screening to predict the most powerful moiety, we discovered that flavonoid glycosides (especially eriodictyol-7-O-neohesperidoside) have a greater affinity for the pocket than the other moieties. The results indicated the therapeutic activity of the A. halimus ethyl acetate fraction against induced T2D in Drosophila larvae. The antidiabetic activity may be attributed to flavonoids, which are the main components of the A. halimus ethyl acetate fraction.
Collapse
Affiliation(s)
- Omnia Montaser
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona El-Aasr
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Wesam S Meshrif
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hanaa Elbrense
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Li D, Fan J, Du L, Ren G. Prenylated flavonoid fractions from Glycyrrhiza glabra alleviate insulin resistance in HepG2 cells by regulating the ERK/IRS-1 and PI3K/Akt signaling pathways. Arch Pharm Res 2024; 47:127-145. [PMID: 38267702 DOI: 10.1007/s12272-024-01485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Insulin resistance (IR) is a key factor in the pathogenesis of disrupted glucose metabolism. Although the extract of Glycyrrhiza glabra has shown significant hypoglycemic activity, its bioactive components remain to be identified, and their mechanisms of action, especially on hepatocyte glucose metabolism, are yet to be explored. In the present study, the primary compounds from Glycyrrhiza glabra [named prenylated flavonoid fractions (PFFs)] have been identified and their chemical structures have been elucidated. The therapeutic effects of PFFs extracted from G. glabra on glucose metabolism disorders and IR in high insulin-induced insulin-resistant HepG2 (IR-HepG2) cells have been determined. Glabridin (GLD) was used as a control. The results indicated that, similar to GLD, PFFs increased glucose consumption, glucose uptake, and translocation of glucose transporter 4 to the plasma membrane in IR-HepG2 cells. In addition, they enhanced the activities of glycogen synthase, glucokinase, and pyruvate kinase, while reducing the activities of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Furthermore, they activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway and suppressed the extracellular signal-regulated kinase/insulin receptor substrate-1 (ERK/IRS-1) pathway. These findings suggest that, similar to GLD, PFFs can alleviate impaired glucose metabolism and alleviate IR in IR-HepG2 cells.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.The authors and their affiliations have been confirmed as correct.
Collapse
Affiliation(s)
- Defeng Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinling Fan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Lin Du
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guoyan Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
4
|
Ho TJ, Ahmed T, Shibu MA, Lin YJ, Shih CY, Lin PY, Ling SZ, Chiang CY, Kuo WW, Huang CY. A prospective review of the health-promoting potential of Jing Si Herbal Tea. Tzu Chi Med J 2024; 36:1-22. [PMID: 38406577 PMCID: PMC10887337 DOI: 10.4103/tcmj.tcmj_194_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 02/27/2024] Open
Abstract
Traditional Chinese medicine (TCM) has gained considerable attention over the past few years for its multicomponent, multitarget, and multi-pathway approach to treating different diseases. Studies have shown that TCMs as adjuvant therapy along with conventional treatment may benefit in safely treating various disorders. However, investigations on finding effective herbal combinations are ongoing. A novel TCM formula, "Jing Si Herbal Tea (JSHT)," has been reported recently for their health-promoting effects in improving overall body and mental health. JSHT is a combination of eight herbs recognized in Chinese herbal pharmacopoeia for their anti-viral, anti-aging, and anti-cancer properties as well as protective effects against cardiovascular, metabolic, neural, digestive, and genitourinary diseases. Thus, to better understand the beneficial effects of the ingredients of JSHT on health, this review intends to summarize the preclinical and clinical studies of the ingredients of JSHT on human health and diseases, and possible therapeutic effects with the related mode of actions and future prospects for their application in complementary therapies.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, HualienTzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tanvir Ahmed
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Yu-Jung Lin
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng Yen Shih
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Ling
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chien-Yi Chiang
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph. D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital and China Medical University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
5
|
Chi MH, Chao J, Ko CY, Huang SS. An Ethnopharmaceutical Study on the Hypolipidemic Formulae in Taiwan Issued by Traditional Chinese Medicine Pharmacies. Front Pharmacol 2022; 13:900693. [PMID: 36188612 PMCID: PMC9520573 DOI: 10.3389/fphar.2022.900693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Globally, approximately one-third of ischemic heart diseases are due to hyperlipidemia, which has been shown to cause various metabolic disorders. This study was aimed to disassemble and analyze hypolipidemic formulae sold by traditional Chinese medicine (TCM) pharmacies. Using commonly used statistical parameters in ethnopharmacology, we identified the core drug combination of the hypolipidemic formulae, thereby exploring the strategy by which the Taiwanese people select hypolipidemic drugs. Most important of all, we preserved the inherited knowledge of TCM. We visited 116 TCM pharmacies in Taiwan and collected 91 TCM formulae. The formulae were mainly disassembled by macroscopical identification, and the medicinal materials with a relative frequency of citation (RFC) >0.2 were defined as commonly used medicinal materials. Subsequently, we sorted the information of medicinal materials recorded in the Pharmacopeia, searched for modern pharmacological research on commonly used medicinal materials using PubMed database, and visualized data based on the statistical results. Finally, the core hypolipidemic medicinal materials used in folk medicine were obtained. Of the 91 TCM formulae collected in this study, 80 traditional Chinese medicinal materials were used, belonging to 43 families, predominantly Lamiaceae. Roots were the most commonly used part as a medicinal material. There were 17 commonly used medicinal materials. Based on medicinal records in Pharmacopeia, most flavors and properties were warm and pungent, the majority traditional effects were “tonifying and replenishing” and “blood-regulating.” Besides, the targeted diseases searching from modern pharmacological studies were diabetes mellitus and dyslipidemia. The core medicinal materials consisted of Astragalus mongholicus Bunge and Crataegus pinnatifida Bunge, and the core formulae were Bu-Yang-Huan-Wu-Tang and Xie-Fu-Zhu-Yu-Tang. In addition, 7 groups of folk misused medicinal materials were found. Although these TCMs have been used for a long period of time, their hypolipidemic mechanisms remain unclear, and further studies are needed to validate their safety and efficacy.
Collapse
Affiliation(s)
- Min-Han Chi
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jung Chao
- Master Program for Food and Drug Safety, Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- *Correspondence: Shyh-Shyun Huang,
| |
Collapse
|
6
|
Wahab S, Annadurai S, Abullais SS, Das G, Ahmad W, Ahmad MF, Kandasamy G, Vasudevan R, Ali MS, Amir M. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. PLANTS (BASEL, SWITZERLAND) 2021; 10:2751. [PMID: 34961221 PMCID: PMC8703329 DOI: 10.3390/plants10122751] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
There are more than 30 species of Glycyrrhiza genus extensively spread worldwide. It was the most prescribed herb in Ancient Egyptian, Roman, Greek, East China, and the West from the Former Han era. There are various beneficial effects of licorice root extracts, such as treating throat infections, tuberculosis, respiratory, liver diseases, antibacterial, anti-inflammatory, and immunodeficiency. On the other hand, traditional medicines are getting the attraction to treat many diseases. Therefore, it is vital to screen the medicinal plants to find the potential of new compounds to treat chronic diseases such as respiratory, cardiovascular, anticancer, hepatoprotective, etc. This work comprehensively reviews ethnopharmacological uses, phytochemistry, biological activities, clinical evidence, and the toxicology of licorice, which will serve as a resource for future clinical and fundamental studies. An attempt has been made to establish the pharmacological effect of licorice in different diseases. In addition, the focus of this review article is on the molecular mechanism of licorice extracts and their four flavonoids (isoliquiritigenin, liquiritigenin, lichalocone, and glabridin) pharmacologic activities. Licorice could be a natural alternative for current therapy to exterminate new emerging disorders with mild side effects. This review will provide systematic insights into this ancient drug for further development and clinical use.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gotam Das
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Safaa, Dammam 34222, Saudi Arabia;
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohd Amir
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| |
Collapse
|
7
|
Pharmacological properties of glabridin (a flavonoid extracted from licorice): A comprehensive review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
8
|
Igarashi Y, Iida S, Dai J, Huo J, Cui X, Sawashita J, Mori M, Miyahara H, Higuchi K. Glavonoid-rich oil supplementation reduces stearoyl-coenzyme A desaturase 1 expression and improves systemic metabolism in diabetic, obese KK-A y mice. Biomed Pharmacother 2021; 140:111714. [PMID: 34022607 DOI: 10.1016/j.biopha.2021.111714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022] Open
Abstract
AIMS Glavonoid-rich oil (GRO) derived from ethanol extraction of licorice (Glycyrrhiza glabra Linne) root has been reported to have beneficial effects on health. In this study, we aimed to determine the effect of long-term administration of GRO on metabolic disorders and to elucidate the molecular mechanism. MAIN METHODS Female obese, type 2 diabetic KK-Ay mice were fed diets supplemented with 0.3% or 0.8% GRO (w/w) for 4-12 weeks. Mice were euthanized and autopsied at 20 weeks old. The effects of GRO on lipid and glucose metabolism were evaluated by measuring physiological and biochemical markers using mRNA sequencing, quantitative reverse-transcription PCR, and western blot analyses. KEY FINDINGS Compared to mice fed the control diet, GRO-supplemented mice had reduced body and white adipose tissue weights, serum levels of triglycerides and cholesterol, and improved glucose tolerance, while food intake was not affected. We found remarkable reductions in the gene expression levels of stearoyl-coenzyme A desaturase 1 (Scd1) and pyruvate dehydrogenase kinase isoenzyme 4 (Pdk4) in the liver, in addition to decreased expression of fatty acid synthase (Fasn) in inguinal white adipose tissue (iWAT). These results suggest that GRO supplementation improves lipid profiles via reduced de novo lipogenesis in the liver and white adipose tissue. Glucose metabolism may also be improved by increased glycolysis in the liver. SIGNIFICANCE Our analysis of long-term supplementation of GRO in obese and diabetic mice should provide novel insight into preventing insulin resistance and metabolic syndromes.
Collapse
Affiliation(s)
- Yuichi Igarashi
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Shiho Iida
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Jian Dai
- Department of Neuro-Health Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Jia Huo
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Matsumoto, Japan; The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoran Cui
- Department of Aging Biology, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Jinko Sawashita
- Research & Development Team, Supplement Business Division, Pharma & Supplemental Nutrition Solutions Vehicle, Kaneka Corporation, Osaka, Japan
| | - Masayuki Mori
- Department of Neuro-Health Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan; Department of Aging Biology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroki Miyahara
- Department of Neuro-Health Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Keiichi Higuchi
- Department of Neuro-Health Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan; Department of Aging Biology, Shinshu University School of Medicine, Matsumoto, Japan; Community Health Care Research Center, Nagano University of Health and Medicine, Nagano, Japan.
| |
Collapse
|
9
|
Jafari F, Jafari M, Moghadam AT, Emami SA, Jamialahmadi T, Mohammadpour AH, Sahebkar A. A Review of Glycyrrhiza glabra (Licorice) Effects on Metabolic Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:385-400. [DOI: 10.1007/978-3-030-73234-9_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Yang L, Jiang Y, Zhang Z, Hou J, Tian S, Liu Y. The anti-diabetic activity of licorice, a widely used Chinese herb. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113216. [PMID: 32763420 DOI: 10.1016/j.jep.2020.113216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A great deal of valuable experience has been accumulated in the traditional Chinese medicine (TCM) system for the treatment of "Xiaoke" disease which is known as diabetes mellitus now. As the most-commonly used Chinese herb, licorice has been used in TCM for more than two thousand years. It is often used in combination with other herbs to treat metabolic disorders, especially diabetes mellitus. AIM OF THE STUDY To summarize the characteristics, mechanisms, and clinical use of licorice and its active components for treating diabetes mellitus. METHODS PubMed, Web of Science, Research Gate, Science Direct, Google Scholar, and Academic Journals were used as information sources by the inclusion of the search terms 'diabetes', 'licorice', 'licorice extracts', 'flavonoids', 'triterpenoids', and their combinations, mainly from 2005 to 2019. RESULTS Licorice extracts, five flavonoids and three triterpenoids isolated from licorice possess great antidiabetic activities in vivo and in vitro. This was done by several mechanisms such as increasing the appetency and sensitivity of insulin receptor site to insulin, enhancing the use of glucose in different tissues and organs, clearing away the free radicals and resist peroxidation, correcting the metabolic disorder of lipid and protein, and improving microcirculation in the body. Multiple signaling pathways, including the PI3K/Akt, AMPK, AGE-RAGE, MAPK, NF-кB, and NLRP3 signaling pathways, are targets of the licorice compounds. CONCLUSION Licorice and its metabolites have a great therapeutic potential for the treatment of diabetes mellitus. However, a better understanding of their pharmacological mechanisms is needed for evaluating its efficacy and safety.
Collapse
Affiliation(s)
- Lin Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, PA, 15261, USA
| | - Zhixin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiaming Hou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shaokai Tian
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
11
|
Tanaka M, Kanazashi M, Kondo H, Ishihara A, Fujino H. Licorice flavonoid oil supplementation promotes a reduction of visceral fat in exercised rats. J Sports Med Phys Fitness 2020; 61:480-488. [PMID: 33000933 DOI: 10.23736/s0022-4707.20.11260-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The beneficial effect of exercise combined with licorice flavonoid oil supplementation on visceral fat was investigated. METHODS Male Sprague-Dawley rats were divided into 4 groups: control, exercise (Ex), control with licorice flavonoid oil supplementation (LFO), and exercise with licorice flavonoid oil supplementation (ExLFO) groups. The rats in the Ex and ExLFO groups ran on a treadmill (20-degree incline at 20 m/min for 30 min/day) 5 times a week for 7 weeks, and those in the LFO and ExLFO groups were orally administered with licorice flavonoid oil daily using a feeding needle. RESULTS Exercise or licorice flavonoid oil supplementation resulted in the reduction of the visceral fat mass and adipocyte size, respectively. In addition, exercise combined with licorice flavonoid oil supplementation more effectively decreased both measures. Exercise alone increased the β-hydroxyacyl-CoA dehydrogenase (β-HAD) and citrate synthase (CS) activities in the soleus and plantaris muscles, and licorice flavonoid oil supplementation alone increased the hepatic carnitine palmitoyl transferase-2 (CPT-2) activity. Furthermore, the combination of exercise and licorice flavonoid oil supplementation enhanced the both muscular β-HAD and CS activities, and hepatic CPT-2 activity. CONCLUSIONS These results suggest that exercise combined with licorice flavonoid oil supplementation may be effective to decrease visceral adipose tissue via enhancing skeletomuscular and hepatic fatty acids oxidative capacity.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, Okayama, Japan
| | - Miho Kanazashi
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara, Japan
| | - Hiroyo Kondo
- Department of Food Sciences and Nutrition, Nagoya Women's University, Nagoya, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan -
| |
Collapse
|
12
|
Caro-Ordieres T, Marín-Royo G, Opazo-Ríos L, Jiménez-Castilla L, Moreno JA, Gómez-Guerrero C, Egido J. The Coming Age of Flavonoids in the Treatment of Diabetic Complications. J Clin Med 2020; 9:jcm9020346. [PMID: 32012726 PMCID: PMC7074336 DOI: 10.3390/jcm9020346] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM), and its micro and macrovascular complications, is one of the biggest challenges for world public health. Despite overall improvement in prevention, diagnosis and treatment, its incidence is expected to continue increasing over the next years. Nowadays, finding therapies to prevent or retard the progression of diabetic complications remains an unmet need due to the complexity of mechanisms involved, which include inflammation, oxidative stress and angiogenesis, among others. Flavonoids are natural antioxidant compounds that have been shown to possess anti-diabetic properties. Moreover, increasing scientific evidence has demonstrated their potential anti-inflammatory and anti-oxidant effects. Consequently, the use of these compounds as anti-diabetic drugs has generated growing interest, as is reflected in the numerous in vitro and in vivo studies related to this field. Therefore, the aim of this review is to assess the recent pre-clinical and clinical research about the potential effect of flavonoids in the amelioration of diabetic complications. In brief, we provide updated information concerning the discrepancy between the numerous experimental studies supporting the efficacy of flavonoids on diabetic complications and the lack of appropriate and well-designed clinical trials. Due to the well-described beneficial effects on different mechanisms involved in diabetic complications, the excellent tolerability and low cost, future randomized controlled studies with compounds that have adequate bioavailability should be evaluated as add-on therapy on well-established anti-diabetic drugs.
Collapse
Affiliation(s)
- Teresa Caro-Ordieres
- Research Discovery and Innovation Department, FAES FARMA, S.A, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa (Bizkaia), Spain;
| | - Gema Marín-Royo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Luna Jiménez-Castilla
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Juan Antonio Moreno
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain;
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma de Madrid, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28040 Madrid, Spain; (G.M.-R.); (L.O.-R.); (L.J.-C.); (C.G.-G.)
- Correspondence:
| |
Collapse
|
13
|
Wei HJ, Liu L, Chen FL, Wang D, Wang L, Wang ZG, Jiang RC, Dong JF, Chen JL, Zhang JN. Decreased numbers of circulating endothelial progenitor cells are associated with hyperglycemia in patients with traumatic brain injury. Neural Regen Res 2019; 14:984-990. [PMID: 30762009 PMCID: PMC6404487 DOI: 10.4103/1673-5374.250577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hyperglycemia reduces the number of circulating endothelial progenitor cells, accelerates their senescence and impairs their function. However, the relationship between blood glucose levels and endothelial progenitor cells in peripheral blood of patients with traumatic brain injury is unclear. In this study, 101 traumatic brain injury patients admitted to the Department of Neurosurgery, Tianjin Medical University General Hospital or the Department of Neurosurgery, Tianjin Huanhu Hospital, China, were enrolled from April 2005 to March 2007. The number of circulating endothelial progenitor cells and blood glucose levels were measured at 1, 4, 7, 14 and 21 days after traumatic brain injury by flow cytometry and automatic biochemical analysis, respectively. The number of circulating endothelial progenitor cells and blood sugar levels in 37 healthy control subjects were also examined. Compared with controls, the number of circulating endothelial progenitor cells in traumatic brain injury patients was decreased at 1 day after injury, and then increased at 4 days after injury, and reached a peak at 7 days after injury. Compared with controls, blood glucose levels in traumatic brain injury patients peaked at 1 day and then decreased until 7 days and then remained stable. At 1, 4, and 7 days after injury, the number of circulating endothelial progenitor cells was negatively correlated with blood sugar levels (r = −0.147, P < 0.05). Our results verify that hyperglycemia in patients with traumatic brain injury is associated with decreased numbers of circulating endothelial progenitor cells. This study was approved by the Ethical Committee of Tianjin Medical University General Hospital, China (approval No. 200501) in January 2015.
Collapse
Affiliation(s)
- Hui-Jie Wei
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Li Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fang-Lian Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Liang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin; Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Zeng-Guang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Rong-Cai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jing-Fei Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China; Thrombosis Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jie-Li Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China; Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Jian-Ning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|