1
|
Zhou M, Song T, Huang M, Zheng L, Zhao M. Differential Mechanisms of Soybean-Derived ACE2-Activating Peptides IVPQ and IAVPT in ACE2-Mediated Endothelial Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4065-4077. [PMID: 39920612 DOI: 10.1021/acs.jafc.4c08947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
This study aimed to investigate the modulatory effects of soybean-derived peptides IVPQ and IAVPT, which were initially identified as potent ACE2-activating peptides, on Ang II-induced endothelial dysfunction in human umbilical vein endothelial cells (HUVECs) and the underlying mechanisms via ACE2 activation. IVPQ and IAVPT ameliorated Ang II-induced malignant migration and NO reduction in HUVECs via the activation of the ACE2/Ang-(1-7)/MasR axis, resulting in Ang II degradation and decreased Ang II signaling. These protective effects were attenuated by ACE2 knockdown to different degrees, which was possibly due to different mechanisms of activating ACE2, where IAVPT directly activated ACE2 at a concentration of 1.0 × 10-4 M and IVPQ upregulated ACE2 likely through effects on ACE2 mRNA stability. These results contributed to our understanding of the mechanism of ACE2-activating peptides regulating endothelial function.
Collapse
Affiliation(s)
- Minzhi Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Tianyuan Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Role of whey protein in vascular function: a systematic review and meta-analysis of human intervention studies. Br J Nutr 2022; 128:659-672. [PMID: 34511143 DOI: 10.1017/s0007114521003676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Whey protein (WP) has been heavily appreciated as a rich source of bioactive peptides, with potential benefits for cardiovascular health. This study constitutes a systematic review and meta-analysis summarising the effects of WP consumption on vascular reactivity, arterial stiffness and circulatory biomarkers of vascular function. We searched electronic databases, including PubMed, SCOPUS and Web of science for relevant articles from inception to July 2020. Original clinical trials published in English-language journals that investigated the effects of WP on vascular function were eligible. A total of 720 records were identified in the initial search; from these, sixteen were included in our systematic review and thirteen in meta-analysis. The pooled analysis of six studies showed a significant increase in flow-mediated dilation (FMD) after WP consumption (weighted mean differences (WMD): 1·09 %, 95 % CI: 0·17, 2·01, P= 0·01). Meta-analysis of available data did not show any significant reduction in arterial stiffness measures including augmentation index (effect sizes: 7, WMD: -0·29 %, 95 % CI: -1·58, 0·98, P= 0·64) and pulse wave velocity (effect sizes: 4, WMD: -0·72 m/s, 95 % CI: -1·47, 0·03, P= 0·06). Moreover, the pooled analysis of six effect sizes showed no significant effects on plasma levels of nitric oxide following WP supplementation (WMD: 0·42 μmol/l, 95 % CI: -0·52, 1·36, P= 0·38). The overall results provided evidence supporting a protective effect of WP on endothelial function measured by FMD, but not for arterial stiffness measures and circulatory biomarker of vascular function. Further research is required to substantiate the benefits of WP on vascular function.
Collapse
|
3
|
Duffuler P, Bhullar KS, de Campos Zani SC, Wu J. Bioactive Peptides: From Basic Research to Clinical Trials and Commercialization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3585-3595. [PMID: 35302369 DOI: 10.1021/acs.jafc.1c06289] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chronic diseases, including metabolic diseases, have become a worldwide public health issue. Research regarding the use of bioactive peptides or protein hydrolysates derived from food, as the diet-based strategies for the prevention and mitigation of chronic diseases, has increased exponentially in the past decades. Numerous in vitro and in vivo studies report the efficacy and safety of food-derived bioactive peptides and protein hydrolysates as antihypertensive, anti-inflammatory, antidiabetic, and antioxidant agents. However, despite promising preclinical results, an inadequate understanding of their mechanisms of action and pharmacokinetics restrict their clinical translation. Commercialization of bioactive peptides can be further hindered due to scarce information regarding their efficacy, safety, bitter taste, as well as the lack of a cost-effective method of production. This review provides an overview of the current clinical evidence and challenges to commercial applications of food-derived bioactive peptides and protein hydrolysates for the prevention and alleviation of chronic diseases.
Collapse
Affiliation(s)
- Pauline Duffuler
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Khushwant S Bhullar
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | | | - Jianping Wu
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
4
|
Lee MC, Hsu YJ, Lin YQ, Chen LN, Chen MT, Huang CC. Effects of Perch Essence Supplementation on Improving Exercise Performance and Anti-Fatigue in Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031155. [PMID: 35162178 PMCID: PMC8834868 DOI: 10.3390/ijerph19031155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023]
Abstract
Silver perch (Bidyanus bidyanus) has many nutrition and health benefits, being a rich source of macro and micronutrients, phospholipids, polyunsaturated fatty acids, and a variety of essential minerals while having a high protein content. In addition to direct consumption, it is often made into a soup as an important nutritional supplement for strengthening the body and delaying fatigue. By extracting the essence, its quality can be controlled, and it is convenient to supplement. This study aimed to evaluate the effect of supplementation with Santé premium silver perch essence (SPSPE) on improving exercise performance and anti-fatigue. Fifty male institute of cancer research (ICR) mice were divided into five groups (n = 10/group): (1) vehicle (vehicle control or water only), (2) isocaloric (0.93 g casein/kg/mice/day), (3) SPSPE-1X (0.99 g/kg/mice/day), (4) SPSPE-2X (1.98 g/kg/mice/day), and (5) SPSPE-5X (4.95 g/kg/mice/day). A sample or an equal volume of liquid was fed orally for four consecutive weeks. Grip strength and swimming exhaustion tests were used as exercise performance assessments. After 10 and 90 min of unloaded swimming, biochemical parameters of fatigue were evaluated. We found that supplementation with SPSPE for four consecutive weeks could significantly improve mice’s grip strength, exercise endurance performance, and glycogen content (p < 0.05), and significantly reduced post-exercise fatigue biochemical parameters, such as lactate, blood ammonia (NH3), blood urea nitrogen (BUN) concentration, and muscle damage index creatine kinase (CK) activity (p < 0.05). In summary, supplementation with SPSPE for 4 weeks could effectively improve exercise performance, reduce sports fatigue, and accelerate fatigue recovery. In addition, it did not cause any physiological or histopathological damage.
Collapse
Affiliation(s)
- Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333, Taiwan; (M.-C.L.); (Y.-J.H.); (Y.-Q.L.)
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333, Taiwan; (M.-C.L.); (Y.-J.H.); (Y.-Q.L.)
| | - Yu-Qian Lin
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333, Taiwan; (M.-C.L.); (Y.-J.H.); (Y.-Q.L.)
| | - Ling-Ni Chen
- Anyong Biotechnology, Inc., Kaohsiung City 827, Taiwan;
| | - Mu-Tsung Chen
- Department of Food and Beverage Management, Shih Chien University, Taipei City 104, Taiwan;
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan City 333, Taiwan; (M.-C.L.); (Y.-J.H.); (Y.-Q.L.)
- Correspondence: ; Tel.: +886-3-328-3201 (ext. 2619)
| |
Collapse
|
5
|
König D, Kohl J, Jerger S, Centner C. Potential Relevance of Bioactive Peptides in Sports Nutrition. Nutrients 2021; 13:3997. [PMID: 34836255 PMCID: PMC8622853 DOI: 10.3390/nu13113997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive peptides are physiologically active peptides mostly derived from proteins following gastrointestinal digestion, fermentation or hydrolysis by proteolytic enzymes. It has been shown that bioactive peptides can be resorbed in their intact form and have repeatedly been shown to have a positive effect on health-related parameters such as hypertension, dyslipoproteinemia, inflammation and oxidative stress. In recent years, there has been increasing evidence that biologically active peptides could also play an important role in sports nutrition. Current studies have shown that bioactive peptides could have a positive impact on changes in body composition and muscular performance, reduce muscle damage following exercise and induce beneficial adaptions within the connective tissue. In the following overview, potential mechanisms as well as possible limitations regarding the sports-related effect of bioactive peptides and their potential mechanisms are presented and discussed. In addition, practical applications will be discussed on how bioactive peptides can be integrated into a nutritional approach in sports to enhance athletic performance as well as prevent injuries and improve the rehabilitation process.
Collapse
Affiliation(s)
- Daniel König
- Centre for Sports Science and University Sports, Institute for Nutrition, Exercise and Health, University of Vienna, Auf der Schmelz, 61150 Vienna, Austria
- Department for Nutritional Science, Institute for Nutrition, Exercise and Health, University of Vienna, 61150 Vienna, Austria
| | - Jan Kohl
- Department of Sport and Sport Science, University of Freiburg, 79102 Freiburg, Germany; (J.K.); (S.J.); (C.C.)
| | - Simon Jerger
- Department of Sport and Sport Science, University of Freiburg, 79102 Freiburg, Germany; (J.K.); (S.J.); (C.C.)
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, 79102 Freiburg, Germany; (J.K.); (S.J.); (C.C.)
- Praxisklinik Rennbahn, CH-4132 Muttenz, Switzerland
| |
Collapse
|
6
|
Lorenzo AD, Santos EMD, Bello Moreira AS, Huguenin GVB, Tibirica E. Dietary supplementation with whey protein improves systemic microvascular function in heart failure patients: a pilot study. ACTA ACUST UNITED AC 2021; 54:e10577. [PMID: 33886810 PMCID: PMC8055180 DOI: 10.1590/1414-431x202010577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022]
Abstract
Endothelial dysfunction is a well-known component of the pathophysiology of heart failure (HF), with proven prognostic value. Dietary supplementation with whey protein (WP) has been widely used to increase skeletal muscle mass, but it also has vascular effects, which are less understood. This study aimed to evaluate the effects of WP supplementation on the systemic microvascular function of HF patients. This was a blinded, randomized, placebo-controlled clinical trial that evaluated the effects of 12-week WP dietary supplementation on systemic microvascular function, in patients with HF New York Heart Association (NYHA) classes I/II. Cutaneous microvascular flow and reactivity were assessed using laser speckle contrast imaging, coupled with pharmacological local vasodilator stimuli. Fifteen patients (aged 64.5±6.2 years, 11 males) received WP supplementation and ten patients (aged 68.2±8.8 years, 8 males) received placebo (maltodextrin). The increase in endothelial-dependent microvascular vasodilation, induced by skin iontophoresis of acetylcholine, was improved after WP (P=0.03) but not placebo (P=0.37) supplementation. Moreover, endothelial-independent microvascular vasodilation induced by skin iontophoresis of sodium nitroprusside, was also enhanced after WP (P=0.04) but not placebo (P=0.42) supplementation. The results suggested that dietary supplementation with WP improved systemic microvascular function in patients with HF.
Collapse
Affiliation(s)
- A De Lorenzo
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil
| | - E M Dos Santos
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil
| | - A S Bello Moreira
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil.,Departamento de Nutrição Social, Instituto de Nutrição, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - G V B Huguenin
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil.,Departamento de Nutrição e Dietética, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - E Tibirica
- Instituto Nacional de Cardiologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
7
|
Chen CY, Yuen HM, Lin CC, Hsu CC, Bernard JR, Chen LN, Liao YH, Tsai SC. Anti-fatigue Effects of Santé Premium Silver Perch Essence on Exhaustive Swimming Exercise Performance in Rats. Front Physiol 2021; 12:651972. [PMID: 33828489 PMCID: PMC8019704 DOI: 10.3389/fphys.2021.651972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
Aim: Fish soup is a traditional Chinese food usually offered as a healthy supplement to elders, pregnant women and persons who just had surgery. Silver perch (Santé premium silver perch essence, SPSPE) extract contains various quality proteins, collagen, minerals, trace elements, and branch chain amino acids (BCAA) that could help individuals recover from exhaustion and control body weight. However, there are very limited studies exploring the effects of fish extracts on exercise performance and fatigue, and relevant physiological mechanisms. Therefore, the purpose of this study was to investigate the effects of chronic SPSPE administration on exhaustive exercise performance. Method: Male Wistar rats weighing around 250 g were divided into 4 groups: Control, 1X SPSPE (6.2 ml/kg), 2X SPSPE (12.4 ml/kg) and 5X SPSPE (31.0 ml/kg). Rats were administrated SPSPE by oral gavage feeding every day for 33 days. Their body weight were measured every week. Before and after the exhaustive swimming test, the blood was collected for circulating lactate, glucose, ammonia, hormones, and myoglobin analysis. Rats were sacrificed after performing an exhaustive swimming exercise test. The liver tissues were collected for glycogen content and H&E staining. Results: After the administration of 1X and 5X SPSPE, swimming fatigue was significantly delayed (p = 0.024). There was no difference in the hormone plasma level between the control and SPSPE groups. The induction of plasma corticosterone and TBARS by exhaustive swimming exercise could be decreased by SPSPE administration. The increased plasma myoglobin concentration from exhaustive swimming exercise was weakened by SPSPE supplementation. The higher glycogen sparing contained in liver tissue was observed in SPSPE-treated groups (p < 0.05). Conclusion: SPSPE could efficiently delay swimming fatigue through sparing of liver glycogen and attenuation of plasma TBARS, myoglobin induction by exhaustive exercise. Our findings provide a scientific-based fundamental information and better understanding for developing a fish extract-based anti-fatigue supplement.
Collapse
Affiliation(s)
- Chung-Yu Chen
- Department of Exercise and Health Sciences, University of Taipei, Taipei City, Taiwan
| | - Hei-Man Yuen
- Institute of Sports Sciences, University of Taipei, Taipei City, Taiwan
| | - Chung-Chi Lin
- Healthcare and Service Center, Taipei Veterans General Hospital, Taipei City, Taiwan.,Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan
| | - Chi-Chieh Hsu
- Department of Aquatic Sports, University of Taipei, Taipei City, Taiwan
| | - Jeffrey R Bernard
- Department of Kinesiology, California State University-Stanislaus, Turlock, CA, United States
| | - Ling-Ni Chen
- Anyong Biotechnology, Inc., Kaohsiung City, Taiwan
| | - Yi-Hung Liao
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan
| | - Shiow-Chwen Tsai
- Institute of Sports Sciences, University of Taipei, Taipei City, Taiwan
| |
Collapse
|
8
|
The Potential Role of Fish-Derived Protein Hydrolysates on Metabolic Health, Skeletal Muscle Mass and Function in Ageing. Nutrients 2020; 12:nu12082434. [PMID: 32823615 PMCID: PMC7468851 DOI: 10.3390/nu12082434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Fish protein represents one of the most widely consumed dietary protein sources by humans. The processing of material from the fishing industry generates substantial unexploited waste products, many of which possess high biological value. Protein hydrolysates, such as fish protein hydrolysates (FPH), containing predominantly di- and tripeptides, are more readily absorbed than free amino acids and intact protein. Furthermore, in animal models, FPH have been shown to possess numerous beneficial properties for cardiovascular, neurological, intestinal, renal, and immune health. Ageing is associated with the loss of skeletal muscle mass and function, as well as increased oxidative stress, compromised vascularisation, neurological derangements, and immunosenescence. Thus, there appears to be a potential application for FPH in older persons as a high-quality protein source that may also confer additional health benefits. Despite this, there remains a dearth of information concerning the impact of FPH on health outcomes in humans. The limited evidence from human interventional trials suggests that FPH may hold promise for supporting optimal body composition and maintaining gut integrity. FPH also provide a high-quality source of dietary protein without negatively impacting on subjective appetite perceptions or regulatory hormones. Further studies are needed to assess the impact and utility of FPH on skeletal muscle health in older persons, ideally comparing FPH to ‘established’ protein sources or a non-bioactive, nitrogen-matched control. In particular, the effects of acute and chronic FPH consumption on post-exercise aminoacidaemia, skeletal muscle protein synthesis, and intramyocellular anabolic signalling in older adults are worthy of investigation. FPH may represent beneficial and sustainable alternative sources of high-quality protein to support skeletal muscle health and anabolism in ageing, without compromising appetite and subsequent energy intake.
Collapse
|