1
|
Hadouiri N, Fournel I, Thauvin-Robinet C, Jacquin-Piques A, Ornetti P, Gueugnon M. Walking test outcomes in adults with genetic neuromuscular diseases: a systematic literature review of their measurement properties. Eur J Phys Rehabil Med 2024; 60:257-269. [PMID: 38300152 PMCID: PMC11114158 DOI: 10.23736/s1973-9087.24.08095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Neuromuscular diseases (NMDs) include a large group of heterogeneous diseases. NMDs frequently involve gait disorders, which affect quality of life. Several walking tests and tools have been described in the literature, but there is no consensus regarding the use of walking tests and tools in NMDs or of their measurement properties for walking outcomes. The aim of this review is to present an overview of walking tests, including their measurement properties when used in adults with inherited or genetic NMDs. The aim is to help clinicians and researchers choose the most appropriate test for their objective. EVIDENCE ACQUISITION A systematic review was conducted after consulting MEDLINE (via PubMed), EMBASE, Science direct, Google Scholar and Cochrane Central Register of Controlled Trials databases for published studies in which walking outcome measurement properties were assessed. The validity, reliability, measurement error and responsiveness properties were evaluated in terms of statistical methods and methodological design qualities using the COnsensus-based Standards for the selection of health Measurement Instruments (COSMIN) guidelines. EVIDENCE SYNTHESIS We included 46 studies in NMDs. These studies included 15 different walking tests and a wide variety of walking outcomes, assessed with six types of walking tools. Overall, the 6MWT was the most studied test in terms of measurement properties. The methodological design and statistical methods of most studies evaluating construct validity, reliability and measurement error were "very good." The majority of outcome measurements were valid and reliable. However, studies on responsiveness as minimal important difference or minimal important change were lacking or were found to have inadequate methodological and statistical methods according to the COSMIN guidelines. CONCLUSIONS Most walking outcomes were found to be valid and reliable in NMDs. However, in view of the growing number of clinical trials, further studies are needed to clarify additional measurement properties.
Collapse
Affiliation(s)
- Nawale Hadouiri
- Department of Physical Medicine and Rehabilitation, Dijon-Bourgogne University Hospital, Dijon, France -
- UMR-Inserm 1231, Génétique des Anomalies du Développement (GAD), Bourgogne Franche-Comté University, Dijon, France -
- INSERM, CIC 1432, Clinical Investigation Center, Plurithematic Module, Technological Investigation Platform, Dijon-Bourgogne University Hospital, Dijon, France -
| | - Isabelle Fournel
- Clinical Investigation Center, CHU Dijon, Dijon, France
- INSERM, CIC 1432, Module Epidémiologie Clinique, Dijon, France
| | - Christel Thauvin-Robinet
- UMR-Inserm 1231, Génétique des Anomalies du Développement (GAD), Bourgogne Franche-Comté University, Dijon, France
- Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), CHU Dijon Bourgogne, Dijon, France
- Centre de Référence Maladies Rares "Maladies neurogénétiques", CHU Dijon Bourgogne, Dijon, France
| | - Agnès Jacquin-Piques
- Centre de Compétences Maladies Rares "Maladies neuromusculaires", Department of Neurology, Dijon University Hospital, Dijon, France
| | - Paul Ornetti
- Department of Rheumatology, Dijon-Bourgogne University Hospital, Dijon, France
- INSERM, UMR1093-CAPS, Bourgogne Franche-Comté University, Dijon, France
| | - Mathieu Gueugnon
- INSERM, CIC 1432, Clinical Investigation Center, Plurithematic Module, Technological Investigation Platform, Dijon-Bourgogne University Hospital, Dijon, France
- INSERM, UMR1093-CAPS, Bourgogne Franche-Comté University, Dijon, France
| |
Collapse
|
2
|
Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Almijalli M, Ahamed NU. Minimum number of inertial measurement units needed to identify significant variations in walk patterns of overweight individuals walking on irregular surfaces. Sci Rep 2023; 13:16177. [PMID: 37758958 PMCID: PMC10533530 DOI: 10.1038/s41598-023-43428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
Gait data collection from overweight individuals walking on irregular surfaces is a challenging task that can be addressed using inertial measurement unit (IMU) sensors. However, it is unclear how many IMUs are needed, particularly when body attachment locations are not standardized. In this study, we analysed data collected from six body locations, including the torso, upper and lower limbs, to determine which locations exhibit significant variation across different real-world irregular surfaces. We then used deep learning method to verify whether the IMU data recorded from the identified body locations could classify walk patterns across the surfaces. Our results revealed two combinations of body locations, including the thigh and shank (i.e., the left and right shank, and the right thigh and right shank), from which IMU data should be collected to accurately classify walking patterns over real-world irregular surfaces (with classification accuracies of 97.24 and 95.87%, respectively). Our findings suggest that the identified numbers and locations of IMUs could potentially reduce the amount of data recorded and processed to develop a fall prevention system for overweight individuals.
Collapse
Affiliation(s)
- Tasriva Sikandar
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Faculty of Electrical and Electronics Engineering, University of Malaysia Pahang, 26600, Pekan, Malaysia
| | - Mohammad Fazle Rabbi
- School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Kamarul Hawari Ghazali
- Faculty of Electrical and Electronics Engineering, University of Malaysia Pahang, 26600, Pekan, Malaysia
| | - Omar Altwijri
- Biomedical Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Almijalli
- Biomedical Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
3
|
Brandenbarg P, Hoekstra F, Barakou I, Seves BL, Hettinga FJ, Hoekstra T, van der Woude LHV, Dekker R, Krops LA. Measurement properties of device-based physical activity instruments in ambulatory adults with physical disabilities and/or chronic diseases: a scoping review. BMC Sports Sci Med Rehabil 2023; 15:115. [PMID: 37735403 PMCID: PMC10512652 DOI: 10.1186/s13102-023-00717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND People with physical disabilities and/or chronic diseases tend to have an inactive lifestyle. Monitoring physical activity levels is important to provide insight on how much and what types of activities people with physical disabilities and/or chronic diseases engage in. This information can be used as input for interventions to promote a physically active lifestyle. Therefore, valid and reliable physical activity measurement instruments are needed. This scoping review aims 1) to provide a critical mapping of the existing literature and 2) directions for future research on measurement properties of device-based instruments assessing physical activity behavior in ambulant adults with physical disabilities and/or chronic diseases. METHODS Four databases (MEDLINE, CINAHL, Web of Science, Embase) were systematically searched from 2015 to April 16th 2023 for articles investigating measurement properties of device-based instruments assessing physical activity in ambulatory adults with physical disabilities and/or chronic diseases. For the majority, screening and selection of eligible studies were done in duplicate. Extracted data were publication data, study data, study population, device, studied measurement properties and study outcome. Data were synthesized per device. RESULTS One hundred three of 21566 Studies were included. 55 Consumer-grade and 23 research-grade devices were studied on measurement properties, using 14 different physical activity outcomes, in 23 different physical disabilities and/or chronic diseases. ActiGraph (n = 28) and Fitbit (n = 39) devices were most frequently studied. Steps (n = 68) was the most common used physical activity outcome. 97 studies determined validity, 11 studies reliability and 6 studies responsiveness. CONCLUSION This scoping review shows a large variability in research on measurement properties of device-based instruments in ambulatory adults with physical disabilities and/or chronic diseases. The variability highlights a need for standardization of and consensus on research in this field. The review provides directions for future research.
Collapse
Affiliation(s)
- Pim Brandenbarg
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands.
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands.
| | - Femke Hoekstra
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, V1V 1V7, Canada
| | - Ioulia Barakou
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Bregje L Seves
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Florentina J Hettinga
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, NE1 8ST, UK
| | - Trynke Hoekstra
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
- Department of Health Sciences and Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
| | - Lucas H V van der Woude
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Rienk Dekker
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Leonie A Krops
- Department of Rehabilitation Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| |
Collapse
|
4
|
Poleur M, Markati T, Servais L. The use of digital outcome measures in clinical trials in rare neurological diseases: a systematic literature review. Orphanet J Rare Dis 2023; 18:224. [PMID: 37533072 PMCID: PMC10398976 DOI: 10.1186/s13023-023-02813-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Developing drugs for rare diseases is challenging, and the precision and objectivity of outcome measures is critical to this process. In recent years, a number of technologies have increasingly been used for remote monitoring of patient health. We report a systematic literature review that aims to summarize the current state of progress with regard to the use of digital outcome measures for real-life motor function assessment of patients with rare neurological diseases. Our search of published literature identified 3826 records, of which 139 were included across 27 different diseases. This review shows that use of digital outcome measures for motor function outside a clinical setting is feasible and employed in a broad range of diseases, although we found few outcome measures that have been robustly validated and adopted as endpoints in clinical trials. Future research should focus on validation of devices, variables, and algorithms to allow for regulatory qualification and widespread adoption.
Collapse
Affiliation(s)
- Margaux Poleur
- Department of Neurology, Liege University Hospital Center, Liège, Belgium.
- Neuromuscular Reference Center, Division of Paediatrics University, Hospital University of Liège, Liège, Belgium.
- Centre de Référence des Maladies Neuromusculaires, Centre Hospitalier Régional de la Citadelle, Boulevard du 12eme de Ligne 1, 4000, Liège, Belgium.
| | - Theodora Markati
- MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Laurent Servais
- MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Neuromuscular Reference Center, Division of Paediatrics University, Hospital University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Roberts-Lewis SF, White CM, Ashworth M, Rose MR. The validity of the International Physical Activity Questionnaire (IPAQ) for adults with progressive muscle diseases. Disabil Rehabil 2022; 44:7312-7320. [PMID: 34606392 DOI: 10.1080/09638288.2021.1983042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Measuring the physical activity of adults with progressive muscle diseases is important to inform clinical practice, for activity recommendations and for outcomes meaningful to participants in clinical trials. Despite its wide use, the measurement properties of the International Physical Activity Questionnaire (IPAQ) have not been established in a muscle disease population. MATERIALS AND METHODS The sample of 103 adults with progressive muscle diseases included independently mobile participants and wheelchair users. Their home-based activity measured by the IPAQ was compared to simultaneous weeks of accelerometer activity data collected remotely in a longitudinal, measure evaluation study. Validity, reliability, and responsiveness were evaluated for the IPAQ alone, and for the IPAQ used in conjunction with a smart activity monitor. RESULTS The IPAQ did not demonstrate satisfactory criterion validity, reliability or responsiveness and it systematically overestimated moderate and vigorous physical activity time by 161 minutes per week. Measurement properties of the IPAQ were improved when it was used in combination with a smart activity monitor. CONCLUSIONS The IPAQ did not have satisfactory measurement properties compared to accelerometry in adults with progressive muscle disease. Combining self-report and objective activity measures might improve the accuracy of physical activity assessment in this and other comparable populations.Implications for RehabilitationPhysical activity is a meaningful health outcome for adults with progressive muscle diseases, for whom precise activity quantification is important because of the potential for activity-related disease exacerbation.The International Physical Activity Questionnaire (IPAQ) had unsatisfactory measurement properties compared to accelerometry; however, these were improved by adjunctive smart activity monitoring.Objective or combined physical activity measurement is recommended over self-report alone for clinical assessment of physical activity as part of rehabilitation and self-management programmes.
Collapse
Affiliation(s)
- Sarah F Roberts-Lewis
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Claire M White
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Mark Ashworth
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Michael R Rose
- Department of Neurology, King's College Hospital, London, UK
| |
Collapse
|
6
|
Montes J, Eichinger KJ, Pasternak A, Yochai C, Krosschell KJ. A post pandemic roadmap toward remote assessment for neuromuscular disorders: limitations and opportunities. Orphanet J Rare Dis 2022; 17:5. [PMID: 34983609 PMCID: PMC8726521 DOI: 10.1186/s13023-021-02165-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in technology and expanding therapeutic opportunities in neuromuscular disorders has resulted in greater interest in and development of remote assessments. Over the past year, the rapid and abrupt COVID-19 shutdowns and stay-at-home orders imposed challenges to routine clinical management and clinical trials. As in-person services were severely limited, clinicians turned to remote assessments through telehealth to allow for continued care. Typically, disease-specific clinical outcome assessments (COAs) for neuromuscular disorders (NMD) are developed over many years through rigorous and iterative processes to fully understand their psychometric properties. While efforts were underway towards developing remote assessments for NMD before the pandemic, few if any were fully developed or validated. These included assessments of strength, respiratory function and patient-reported outcomes, as well as wearable technology and other devices to quantify physical activity and function. Without many choices, clinicians modified COAs for a virtual environment recognizing it was not yet known how they compared to standard in-person administration. Despite being able to quickly adapt to the demands of the COVID-19 pandemic, these experiences with remote assessments uncovered limitations and opportunities. It became clear that existing COAs required modifications for use in a virtual environment limiting the interpretation of the information gathered. Still, the opportunity for real-world evaluation and reduced patient burden were clear benefits to remote assessment and may provide a more robust understanding and characterization of disease impact in NMD. Hence, we propose a roadmap navigating an informed post-pandemic path toward development and implementation of safe and successful use of remote assessments for patients with NMD.
Collapse
Affiliation(s)
- Jacqueline Montes
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, 617 West 168th Street, Room 347, New York, NY, 10002, USA.
| | - Katy J Eichinger
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Amy Pasternak
- Departments of Physical Therapy and Occupational Therapy Services and Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Cara Yochai
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Kristin J Krosschell
- Department of Physical Therapy and Human Movement Sciences and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
7
|
Baker N, Gough C, Gordon SJ. Inertial Sensor Reliability and Validity for Static and Dynamic Balance in Healthy Adults: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:5167. [PMID: 34372404 PMCID: PMC8348903 DOI: 10.3390/s21155167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
Compared to laboratory equipment inertial sensors are inexpensive and portable, permitting the measurement of postural sway and balance to be conducted in any setting. This systematic review investigated the inter-sensor and test-retest reliability, and concurrent and discriminant validity to measure static and dynamic balance in healthy adults. Medline, PubMed, Embase, Scopus, CINAHL, and Web of Science were searched to January 2021. Nineteen studies met the inclusion criteria. Meta-analysis was possible for reliability studies only and it was found that inertial sensors are reliable to measure static standing eyes open. A synthesis of the included studies shows moderate to good reliability for dynamic balance. Concurrent validity is moderate for both static and dynamic balance. Sensors discriminate old from young adults by amplitude of mediolateral sway, gait velocity, step length, and turn speed. Fallers are discriminated from non-fallers by sensor measures during walking, stepping, and sit to stand. The accuracy of discrimination is unable to be determined conclusively. Using inertial sensors to measure postural sway in healthy adults provides real-time data collected in the natural environment and enables discrimination between fallers and non-fallers. The ability of inertial sensors to identify differences in postural sway components related to altered performance in clinical tests can inform targeted interventions for the prevention of falls and near falls.
Collapse
Affiliation(s)
- Nicky Baker
- Flinders Digital Health Research Centre, Flinders University, Adelaide, SA 5042, Australia; (C.G.); (S.J.G.)
| | | | | |
Collapse
|
8
|
Filli L, Schwegler S, Meyer C, Killeen T, Easthope CS, Broicher SD, Curt A, Zörner B, Bolliger M, Jung HH, Petersen JA. Characterizing cognitive-motor impairments in patients with myotonic dystrophy type 1. Neuromuscul Disord 2020; 30:510-520. [PMID: 32527589 DOI: 10.1016/j.nmd.2020.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 01/21/2023]
Abstract
Myotonic Dystrophy Type 1 (DM1) is the most frequent hereditary, adult-onset muscular dystrophy. Nevertheless, DM1-associated cognitive-motor impairments have not been fully characterized so far. This study aimed at profiling cognitive and locomotor dysfunctions in these patients. In addition, cognitive-motor interactions were assessed using a dual-task paradigm. Comprehensive cognitive-motor impairment profiles were generated for 19 patients with DM1 and 19 healthy subjects by thorough clinical, biomechanical and neuropsychological examinations. Detailed gait analysis was performed using a 3D motion capture system, whereas cognitive function was assessed using a standardized neuropsychological test battery. Patients with DM1 showed impaired functional mobility, gait velocity and endurance. DM1-related gait pathology was mainly characterized by enhanced dynamic instability, gait variability, and restricted ankle dorsiflexion. Patients' cognitive impairments particularly concerned attentional functions. Dual-task conditions induced gait deviations that slightly differed between patients and controls. DM1-associated cognitive impairments correlated with reduced functional mobility and impaired ankle dorsiflexion. Patients with DM1 revealed significant impairments of walking function, balance and cognitive performance. Differential cognitive-motor interference and significant interactions between cognitive and motor dysfunctions point towards a prominent role of cognition in gait performance of patients with DM1.
Collapse
Affiliation(s)
- Linard Filli
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8001, Zurich, Switzerland; Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland.
| | - Selina Schwegler
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8001, Zurich, Switzerland
| | - Christian Meyer
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Tim Killeen
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Christopher S Easthope
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Sarah D Broicher
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8001, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Björn Zörner
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, University Hospital Balgrist, Forchstrasse 340, 8008 Zurich, Switzerland
| | - Hans H Jung
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8001, Zurich, Switzerland
| | - Jens A Petersen
- Department of Neurology, University Hospital and University of Zurich, Frauenklinikstrasse 26, 8001, Zurich, Switzerland
| |
Collapse
|
9
|
Storm FA, Cesareo A, Reni G, Biffi E. Wearable Inertial Sensors to Assess Gait during the 6-Minute Walk Test: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2660. [PMID: 32384806 PMCID: PMC7249076 DOI: 10.3390/s20092660] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Wearable sensors are becoming increasingly popular for complementing classical clinical assessments of gait deficits. The aim of this review is to examine the existing knowledge by systematically reviewing a large number of papers focusing on the use of wearable inertial sensors for the assessment of gait during the 6-minute walk test (6MWT), a widely recognized, simple, non-invasive, low-cost and reproducible exercise test. After a systematic search on PubMed and Scopus databases, two raters evaluated the quality of 28 full-text articles. Then, the available knowledge was summarized regarding study design, subjects enrolled (number of patients and pathological condition, if any, age, male/female ratio), sensor characteristics (type, number, sampling frequency, range) and body placement, 6MWT protocol and extracted parameters. Results were critically discussed to suggest future directions for the use of inertial sensor devices in the clinics.
Collapse
Affiliation(s)
- Fabio Alexander Storm
- Scientific Institute, IRCCS “E. Medea”, Bioengineering Lab, 23842 Bosisio Parini, Lecco, Italy; (A.C.); (G.R.); (E.B.)
| | | | | | | |
Collapse
|