1
|
Ficagna CA, da Silva AS, Rofino RD, Zatti E, Esposito T, Xavier ACH, Wagner R, Bissacotti BF, Seghetto RB, Ternus EM, Paiano D. Effects on Performance, Immunological Response and Short-Chain Fatty Acid Profile in Feces of Nursery Piglets Fed with Organic Acids and Yeast Wall. Animals (Basel) 2025; 15:1051. [PMID: 40218444 PMCID: PMC11988164 DOI: 10.3390/ani15071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
The piglet nursery phase is one of the critical moments in production, especially in the first few weeks after weaning. Growth-promoting antibiotics have always been used in this phase, but the world is banning or limiting the use of antibiotics for this purpose, which has led researchers to seek alternatives, with an emphasis on organic and natural ones. As a result, this study aimed to evaluate whether a combination of organic acids and their derivatives (ammonium formate, formic acid, ammonium propionate, and acetic acid) and yeast wall (mannan oligosaccharides and beta-glucans) in piglet feeding during the nursery phase has positive effects on the SCFA profile in feces and animal health reflected in greater weight gain. A 40-day experiment was conducted in a completely randomized design containing three treatments, each with nine replicates and three piglets per replicate: negative control (NC: without additives), and a combination of organic acids and yeast wall at doses of 1 and 2 kg/ton (AO+YW-1 and AO+YW-2, respectively). Animals received four diets: pre-starter 1 (d1-7), pre-starter 2 (d8-14), starter 1 (d15-25), and starter 2 (d26-40). The animals were weighed on the day of the diet change. Blood and feces were collected on days 14 and 40 of the experiment. Piglets from the AO+YW-1 group showed more significant weight gain than NC. Feed intake was higher in piglets from the AO+YW-1 group considering the first 25 days of the experiment compared to NC; there was no treatment effect on feed conversion. Piglets from NC had higher levels of C-reactive protein and ferritin, while AO+YW-2 had higher levels of interleukin 10 and lower levels of TNF-α. A greater quantity of SCFA was observed in the feces of piglets on d40, related to the changes in propionic, butyric, isovaleric, and valeric acids. Therefore, the combination of organic acids and yeast wall used at a dose of 1 kg/ton proved to be an additive option for the diet of piglets in the nursery phase to enhance weight gain and reduce the number of doses of injectable antibiotics.
Collapse
Affiliation(s)
- Cassio Antônio Ficagna
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, Chapecó 89815-630, Brazil; (C.A.F.); (R.D.R.); (E.Z.)
| | - Aleksandro Schafer da Silva
- Departamento de Zootecnia, Universidade do Estado de Santa Catarina, Chapecó 89815-630, Brazil; (T.E.); (D.P.)
| | - Rafael Domingos Rofino
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, Chapecó 89815-630, Brazil; (C.A.F.); (R.D.R.); (E.Z.)
| | - Emerson Zatti
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, Chapecó 89815-630, Brazil; (C.A.F.); (R.D.R.); (E.Z.)
| | - Tatiane Esposito
- Departamento de Zootecnia, Universidade do Estado de Santa Catarina, Chapecó 89815-630, Brazil; (T.E.); (D.P.)
| | - Ana Carolina H. Xavier
- Departamento de Ciências de Alimento, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil; (A.C.H.X.); (R.W.)
| | - Roger Wagner
- Departamento de Ciências de Alimento, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil; (A.C.H.X.); (R.W.)
| | - Bianca Fagan Bissacotti
- Departamento de Zootecnia, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil;
| | - Ronaldo Barbieri Seghetto
- Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil;
| | - Eduardo Mioto Ternus
- Programa de Pós-Graduação em Ciência Animal, Universidade do Estado de Santa Catarina, Lages 88520-000, Brazil;
| | - Diovani Paiano
- Departamento de Zootecnia, Universidade do Estado de Santa Catarina, Chapecó 89815-630, Brazil; (T.E.); (D.P.)
| |
Collapse
|
2
|
Barducci RS, Santos AAD, Pacheco LG, Putarov TC, Koch JFA, Callegari MA, Dias CP, de Carvalho RH, da Silva CA. Enhancing Weaned Piglet Health and Performance: The Role of Autolyzed Yeast ( Saccharomyces cerevisiae) and β-Glucans as a Blood Plasma Alternative in Diets. Animals (Basel) 2024; 14:631. [PMID: 38396599 PMCID: PMC10886371 DOI: 10.3390/ani14040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The objective of this study was to evaluate the inclusion of the autolyzed yeast (AY) Saccharomyces cerevisiae with or without an immunomodulator (1,3/1,6 β-glucans) as a total/partial substitute for blood plasma (BP) in the diet of post-weaning piglets; zootechnical performance, intestinal health and microbiota, immune responses and energy metabolism were assessed. A total of 240 castrated male and female piglets, with a mean age of 22 days and mean initial weight of 5.24 ± 0.82 kg, were randomly divided into blocks of four treatments with 12 replicates. The dietary inclusions were blood plasma (BP), autolyzed yeast (AY), autolyzed yeast + immunomodulator (AYI) and 50% BP and 50% AY (BPAY). In pre-initial phase II (29-35 days), piglets fed AY showed better feed conversion (FCR = 1.358) than the piglets in the BP (1.484), AYI (1.379) and BPAY (1.442) groups, i.e., 8.49% (0.126), 1.52% (0.021) and 4.50% (0.084), respectively (p = 0.0293). In the total period (21-42 days), better FCR was observed in the AYI (1.458) group, i.e., 4.64% (0.071), 1.15% (0.017) and 4.58% (0.070), than in the BP (1.529), AY (1.475) and BPAY (1.528) groups, respectively (p = 0.0150). In piglets fed AY (n = 3) and BPAY (n = 2), there was a reduction in the number of medications, i.e., 82.35% (-14n) and 88.23% (-15n), respectively (p = 0.0001), compared with that in the BP group (n = 17). In the AY group (73.83 mg/dL), AYI group (69.92 mg/dL), and BPAY group (69.58 mg/dL), piglets exhibited increases in triglyceride levels of 79.32%, 69.83%, and 69.00%, respectively, in comparison to those in the BP group, which had triglyceride levels of 41.17 mg/dL (p = 0.0400). The beta-hydroxybutyrate concentration in the AY group (79.96 ng/μL) was lower by 31.95%, 22.64%, and 5.89% compared to the BP group (117.50 ng/μL), AYI group (103.36 ng/μL), and BPAY group (84.67 ng/μL), respectively (p = 0.0072). In the AYI group, there was modulation of the microbiota, with an increase in the relative abundance of bacteria of the genera Lactobacillus, Collinsella and Bulleidia. AY, associated or not associated with an immunomodulator, is a potential substitute for BP in diets for piglets in the nursery phase, with positive effects on immune, metabolic, and intestinal microbial performance.
Collapse
Affiliation(s)
- Robson Sfaciotti Barducci
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | | | - Leticia Graziele Pacheco
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | - Thaila Cristina Putarov
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | - João Fernando Albers Koch
- Biorigin, Lençóis Paulista 18680-900, SP, Brazil; (R.S.B.); (A.A.D.S.); (L.G.P.); (T.C.P.); (J.F.A.K.)
| | | | | | - Rafael Humberto de Carvalho
- Akei Animal Research, Fartura 18870-970, SP, Brazil; (M.A.C.); (C.P.D.); (R.H.d.C.)
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| | - Caio Abércio da Silva
- Animal Science Program, Center of Agrarian Sciences, State University of Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
3
|
Goh TW, Kim HJ, Moon K, Kim CS, Kim YY. Effects of β-glucan with vitamin E supplementation on the growth performance, blood profiles, immune response, fecal microbiota, fecal score, and nutrient digestibility in weaning pigs. Anim Biosci 2023; 36:642-653. [PMID: 36397695 PMCID: PMC9996270 DOI: 10.5713/ab.22.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE This study was conducted to evaluate effects of β-glucan with vitamin E supplementation on the growth performance, blood profiles, immune response, fecal microbiota, fecal score, and nutrient digestibility in weaning pigs. METHODS A total of 200 weaning pigs with an average body weight (BW) of 7.64±0.741 kg were allotted to five treatment groups and were divided based on sex and initial BW in four replicates with ten pigs per pen in a randomized complete block design. The experimental diets included a corn‒soybean meal-based basal diet with or without 0.1% or 0.2% β-glucan and 0.02% vitamin E. The pigs were fed the diets for 6 weeks. A total of 15 barrows were used to evaluate the nutrient digestibility by the total collection method. The BW and feed intake were measured at the end of each phase. Blood samples were collected at the end of each phase, and fecal samples were collected at the end of the experiment. RESULTS The addition of β-glucan with vitamin E to weaning pig feed increased BW, average daily gain, and average daily feed intake. A significant decrease in yeast and mold and Proteobacteria and a tendency for Lactobacillus to increase compared to the control was shown when 0.1% β-glucan and 0.02% vitamin E were added. The fecal score in weaning pigs was lower in the treatments supplemented with 0.1% or 0.2% β-glucan and 0.02% vitamin E compared to the control. In addition, vitamin E was better supplied to weaning pigs by increasing the concentration of α-tocopherol in the blood of weaning pigs when 0.02% vitamin E was supplemented. However, there was no significant difference in either the immune response or nutrient digestibility. CONCLUSION Inclusion of 0.1% β-Glucan with 0.02% vitamin E in a weaning pig's diet were beneficial to the growth performance of weaning pigs by improving intestinal microbiota and reducing the incidence of diarrhea.
Collapse
Affiliation(s)
- Tae Wook Goh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hong Jun Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunyong Moon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Cheon Soo Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoo Yong Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
4
|
Goh TW, Hong J, Kim HJ, Kang SW, Kim YY. Effects of β-glucan with vitamin E supplementation on the physiological response, litter performance, blood profiles, immune response, and milk composition of lactating sows. Anim Biosci 2023; 36:264-274. [PMID: 36108694 PMCID: PMC9834731 DOI: 10.5713/ab.22.0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/26/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study was conducted to evaluate the effects of β-glucan with vitamin E supplementation on the physiological response, litter performance, blood profiles, immune response, and milk composition of lactating sows. METHODS A total of 50 multiparous F1 sows (Yorkshire×Landrace) with an average body weight (BW) of 233.6±4.30 kg and an average parity of 4.00±0.307 and their litters were used in this experiment. All sows were allotted to one of five treatments, taking into consideration BW, backfat thickness, and parity in a completely randomized design with 10 replicates. The experimental diets included a corn-soybean meal-based basal diet with or without 0.1% or 0.2% β-glucan and 110 IU vitamin E/kg diet. RESULTS All treatments added with β-glucan or vitamin E were statistically higher in the average daily feed intake (ADFI) of lactating sows compared to those of the control (Diet, p<0.01). Additionally, the ADFI of lactating sows was significantly higher in the groups supplemented with 0.1% β-glucan compared to 0.2% β-glucan (BG, p<0.01). There was an increasing trend in piglet weight at weaning (BG, p = 0.07), litter weight at the 21st day of lactation (BG, p = 0.07) and litter weight gain (BG, p = 0.08) in groups supplemented with 0.1% β-glucan. The addition of 110 IU vitamin E/kg diet increased vitamin E concentration significantly in lactating sows (VE, p<0.01) and exhibited a trend for higher concentrations of vitamin E (VE, p = 0.09) in piglets. Adding 0.1% β-glucan compared to 0.2% β-glucan induced a decrease in the concentration of tumor necrosis factor-α in lactating sows (BG, p = 0.06) and in piglets (BG, p = 0.09) on the 21st day of lactation. There were no significant differences in the milk composition of sows. CONCLUSION Adding 0.1% β-glucan and 110 IU vitamin E/kg to a lactating sow's diet was beneficial to the growth performance of piglets by leading to an increase in the feed intake of sows and efficiently supplying vitamin E to both the sows and piglets.
Collapse
Affiliation(s)
- Tae Wook Goh
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Jinsu Hong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea,Department of Animal Science, South Dakota State University, Brookings, SD 57006,
USA
| | - Hong Jun Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Sun Woo Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Yoo Yong Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea,Corresponding Author: Yoo Yong Kim, Tel: +82-2-878-5838, Fax: +82-2-878-5839, E-mail:
| |
Collapse
|
5
|
Maqsood M, Anam Saeed R, Sahar A, Khan MI. Mulberry plant as a source of functional food with therapeutic and nutritional applications: A review. J Food Biochem 2022; 46:e14263. [PMID: 35642132 DOI: 10.1111/jfbc.14263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants from the family Moraceae have diverse applications in agriculture, cosmetics, food, and the pharmaceutical industry. Their extensive spectrum of pharmacological activity for treating numerous inflammatory illnesses, cancer, cardiovascular diseases, and gastrointestinal problems reflects their biological and therapeutic value. This article summarizes the molecular mechanisms related to the biological implications of mulberry extracts, fractions, and isolated bioactive compounds from different parts in various health-related ailments. Additionally, the food industry and animal nutrition applications are summarized. Phytochemicals such as steroids, saponins, alkaloids, glycosides, polysaccharides, and phenolic compounds including terpenoids, flavonoids, anthocyanins, and tannins are found in this medicinal plant. The aqueous, ethanolic, and methanolic extracts, as well as bioactive compounds, have anti-oxidative, hypoglycemic, nephroprotective, antimicrobial, neuroprotective, anti-mutagenic, hepatoprotective, anthelmintic, immune-modulatory, cardioprotective, and skin protecting activities. Mulberry supplementation in food products improves the stability of phenolics, sensory properties, antioxidant activity, and antimicrobial properties. Mulberry leaves in animal feed increase the nutrient digestibility, growth parameters, antimicrobial, and antioxidant properties. PRACTICAL APPLICATIONS: This review summarized the in vivo and in vitro biological activities of the mulberry and isolated constituents in various health conditions. In addition, the food uses such as antioxidant potential, antimicrobial, and physicochemical properties were discussed. Furthermore, in vivo studies revealed mulberry as a significant protein source and its flavonoids as potential animal foliage.
Collapse
Affiliation(s)
- Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
6
|
Liu X, Ju Y, Liu M, Huang L, Luo Y, Qi L, Ye J, Zhang S, Yan Y, Li Y. Effect of dietary Auricularia cornea culture supplementation on growth performance, serum biochemistry profile and meat quality in growing-finishing pigs. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/143105/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Luo J, Chen D, Mao X, He J, Yu B, Cheng L, Zeng D. Purified β-glucans of Different Molecular Weights Enhance Growth Performance of LPS-challenged Piglets via Improved Gut Barrier Function and Microbiota. Animals (Basel) 2019; 9:ani9090602. [PMID: 31450592 PMCID: PMC6770163 DOI: 10.3390/ani9090602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Beta-glucan is currently under consideration as an alternative to in-feed antibiotics for the sustainable pig production industry in China. Modulating intestinal function by β-glucan treatment in young pigs is one potential way of decreasing disease susceptibility and presumably increasing growth performance. In the present study, as a newly developed commercial product, β-glucans have proved to modulate gut function, and have improved growth performance in lipopolysaccharide (LPS)-challenged piglets. The present study aimed to determine the mechanisms involved inβ-glucan of low and high molecular weight mediated growth alterations in weaned piglets. The results confirmed that β-glucans isolated from Agrobacterium sp. ZX09 could improve growth performance in weaned piglets and they showed intestinal modulatory properties via different mechanisms in regulating the mucosal barrier function and microbial populations between two different molecular weight β-glucans. Abstract This study investigated β-glucan derived from Agrobacterium sp. ZX09 with high (2000 kDa) and low (300 kDa) molecular weight (MW) to compare their effects on growth performance and gut function in LPS-induced weaned piglets. Changes in jejunal morphology, mucosal barrier function, microbial populations, and fermentation in the piglets were determined. Data showed that β-glucan prevented body weight loss in LPS challenged piglets. Supplementation with both β-glucan fractions improved jejunal morphology. Compared to low MW, β-glucan of high MW generally up-regulated transcripts of ZO-1, MUC1, and MUC2 in jejunal mucosa to a lesser extent. Mucosal D-lactate, diamine oxidase, and anti-oxidation index were effectively resumed in β-glucan treatment. Both β-glucan diets provoked the emergence of a balanced microbiota and a richer concentration of volatile fatty acids in the colon. The richest community of bifidobacterium and concentration of butyrate emerged after feeding β-glucan with high MW. Results suggested that the effect of Agrobacterium sp. ZX09 β-glucans on the gut-modulatory function is largely linked to their MW. Low MW β-glucan mainly improved the mucosal barrier function in the jejunum, while high MW β-glucan had profound effects on the microbial community and fermentation in the hindgut of piglets.
Collapse
Affiliation(s)
- Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu 611130, Sichuan, China.
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu 611130, Sichuan, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu 611130, Sichuan, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu 611130, Sichuan, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, and Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu 611130, Sichuan, China
| | - Long Cheng
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Dookie Campus, VIC 3647, Australia
| | - Dafu Zeng
- Sichuan Synlight Biotech Ltd., Chengdu 610041, Sichuan, China
| |
Collapse
|
8
|
Luo J, Liu S, Yu B, He J, Mao X, Cheng L, Chen D. Beta-glucan from Agrobacterium sp. ZX09 improves growth performance and intestinal function in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2019; 103:1818-1827. [PMID: 31441134 DOI: 10.1111/jpn.13163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Beta-glucan is currently under consideration as an alternative to in-feed antibiotics. The aim of the study was to investigate Agrobacterium sp. ZX09 beta-glucan on intestinal morphology, cytokine concentration, mucin expression and microbial populations of weaning piglets. Pigs were randomly assigned to one of five dietary treatments supplemented with 0, 25, 50, 100 and 200 mg/kg beta-glucan. Data showed an increase in ADG at the 100 mg/kg group (p = .03). A significant increase in villus height and reduction in crypt depth were fund in ileal tissue at the 100 mg/kg inclusion level (p < .05). Dietary supplementation of 100 mg/kg beta-glucan enhanced IL-10 concentration (p = .04) and gene expression of MUC1 and MUC2 (p < .05) in the jejunum. Dietary supplementation of 100 mg/kg beta-glucan provoked the up-regulation of Lactobacillus counts and down-regulation of Escherichia coli counts in the caecum (p = .05). Data suggested that improved growth performance in response to beta-glucan supplementation at 100 mg/kg in weaned piglets may be explained by the improved intestinal function.
Collapse
Affiliation(s)
- Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, China
| | - Shuli Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, China
| | - Long Cheng
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Shepparton, Victoria, Australia
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease Resistance Nutrition Ministry of Education, Chengdu, China
| |
Collapse
|
9
|
San Andres JV, Mastromano GA, Li Y, Tran H, Bundy JW, Miller PS, Burkey TE. The effects of prebiotics on growth performance and in vitro immune biomarkers in weaned pigs. Transl Anim Sci 2019; 3:1315-1325. [PMID: 32704894 PMCID: PMC7200398 DOI: 10.1093/tas/txz129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023] Open
Abstract
The objective of the experiment was to investigate the effects of prebiotics in nursery pigs on growth performance and immune biomarkers. Sixty-four weaned pigs (31 ± 1 d; BW 8 ± 0.1 kg) of mixed gender were housed (4 pigs/pen) in an environmentally controlled nursery with ad libitum access to feed and water over a 35-d study. Pigs were randomly assigned to one of four treatments: control (53% corn, 32% SBM, 7% fishmeal, 8% others), control + 2.5% GroBiotic-S (GS), control + 0.05% chicory (CL), or control + 0.5% chicory (CH). Feeders and pigs were weighed weekly. On day 21, blood samples were obtained from three pigs/treatment for collection of peripheral blood mononuclear cells (PBMC). Isolated PBMC were cultured and subsequently challenged with lipopolysaccharide (LPS; 20 ng/mL). Cell culture supernatants were collected for quantification of the pro- and anti-inflammatory cytokines, interleukin (IL)-8 and IL-10, respectively. Dietary treatment had no effect on BW. At days 28 to 35, pigs fed GS (790 ± 15 g), CL (704 ± 15 g), or CH (692 ± 15 g) had greater (P < 0.05) ADG compared with control (643 ± 15 g) pigs. In addition, overall (days 0–35), pigs fed GS (823 ± 18 g), CL (783 ± 18 g), or CH (782 ± 18 g) had greater (P < 0.05) ADFI compared with control, and ADFI for GS-fed pigs was greater (P < 0.05) than either CL or CH. There was no difference in G:F among treatments. In vitro LPS challenge increased (P < 0.05) IL-8 secretion from PBMC isolated from CL (23,731 ± 3,221 pg/mL) pigs compared with control (10,061 ± 3,221 pg/mL) and CH (12,411 ± 3,221 pg/mL) pigs. Secretion of IL-10 from PBMC isolated from CL (63 ± 9 pg/mL) pigs was greater (P < 0.05) compared with control (22 ± 9 pg/mL) pigs and tended (P < 0.1) to be greater compared with CH (34 ± 9 pg/mL) pigs. Results indicate that inclusion of prebiotics in nursery pig diets has positive effects on growth performance and may have immunomodulatory effects (in vitro) on cells isolated from prebiotic-fed pigs.
Collapse
Affiliation(s)
- Joice V San Andres
- Department of Animal Science, University of Nebraska, Lincoln, NE.,Department of Animal Science, Central Luzon State University, Philippines
| | | | - Yanshuo Li
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Huyen Tran
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Justin W Bundy
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Phillip S Miller
- Department of Animal Science, University of Nebraska, Lincoln, NE
| | - Thomas E Burkey
- Department of Animal Science, University of Nebraska, Lincoln, NE
| |
Collapse
|
10
|
Dietary β-glucan supplementation improves growth performance, carcass traits and meat quality of finishing pigs. ACTA ACUST UNITED AC 2019; 5:380-385. [PMID: 31890915 PMCID: PMC6920398 DOI: 10.1016/j.aninu.2019.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/15/2019] [Accepted: 06/13/2019] [Indexed: 11/21/2022]
Abstract
This experiment was conducted to investigate growth performance, carcass traits and meat quality of finishing pigs with dietary β-glucan supplementation. A total of 96 healthy pigs (Duroc × Landrace × Yorkshire; initial average BW = 25 kg) were randomly allocated into 4 dietary treatments with 6 replicates per treatment and 4 pigs per replicate. The control group was fed a basal diet, and the experimental diets were supplemented with 50, 100 and 200 mg/kg Agrobacterium sp. ZX09 β-glucan, respectively. The experiment lasted 103 d. The basal diet supplemented with 100 mg/kg β-glucan significantly increased average daily gain and feed conversion ratio, probably due to the improved digestibility of dry matter, gross energy and crude protein (P < 0.05). Beta-glucan supplementation from 100 to 200 mg/kg of diet significantly increased carcass length (P < 0.05). The basal diet supplemented with 100 mg/kg β-glucan supplementation also significantly (P < 0.05) increased muscle pH, reduced drip losses and increased a∗ values. The basal diet supplemented with 100 mg/kg β-glucan increased the content of intramuscular fat and changed the proportion of saturated fatty acid and unsaturated fatty acid, thereby improved the flavor of meat. In conclusion, the basal diet supplemented with 100 mg/kg Agrobacterium sp. ZX09 β-glucan improves growth performance, nutrient digestibility, carcass length, and pork quality of finishing pigs.
Collapse
|
11
|
Survival of probiotics in soyoghurt plus mulberry (c.v. Chiang Mai 60) leaf extract during refrigerated storage and their ability to tolerate gastrointestinal transit. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Yin J, Kim HS, Kim YM, Kim IH. Effects of dietary fermented red ginseng marc and red ginseng extract on growth performance, nutrient digestibility, blood profile, fecal microbial, and noxious gas emission in weanling pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1466708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jia Yin
- Department of Animal Resource and Science, Dankook University, Cheonan-si, South Korea
| | - Hyun Soo Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, South Korea
| | - Yong Min Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, South Korea
| |
Collapse
|
13
|
Lei XJ, Lee IS, Kim IH. Effects of expanded diets and phase feeding programme on growth performance, carcass traits and meat quality in growing-finishing pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1448822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xin Jian Lei
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - Il Seok Lee
- Department of English, Dankook University, Cheonan, Republic of Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
14
|
Serpunja S, Sankar K, Kim JK, Kim IH. Impacts of dietary β-glucan ( Morus Alba and Curcuma Longa) supplementation on growth performance, apparent total tract digestibility, fecal microbial, fecal characteristics, and blood profiles in weanling pigs. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1546583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Subin Serpunja
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - Kathannan Sankar
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
- Toxicological Evaluation Laboratory, Veterinary Drugs and Biologic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Republic of Korea
| | - Jong Keun Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|