1
|
Lakshmanan DK, Ravichandran G, Elangovan A, D AA, Thilagar S. Mechanisms and Intervention of Prebiotic Foods in Musculoskeletal Health. J Nutr 2024; 154:2628-2639. [PMID: 39004225 DOI: 10.1016/j.tjnut.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
The review focuses primarily on collating and analyzing the mechanistic research data that discusses the function of prebiotics to halt the frailty of musculoskeletal system. Musculoskeletal diseases (MSDs) are frequently reported to co-occur within their own categories of conditions, such as osteoarthritis, rheumatoid arthritis, gouty arthritis, and psoriatic arthritis owing to their overlapping pathogenesis. Consequently, the same drugs are often used to manage the complications of most types. A few recent studies have addressed the therapeutic functions of gut microbes toward those commonly shared MSD pathway targets. Improving microbial diversity and enriching their population in the gut would promote the regeneration and recovery of the musculoskeletal system. Prebiotics are usually nondigestible substrates that are selectively used or digested by the gut microbes conferring health promotion. The microbial fermentation of prebiotics generates numerous host-beneficial therapeutic molecules. This study inspects the presumptive functions of plant-derived prebiotics for the growth and restoration of intestinal microbiota and the consequent improvement of skeletal health. The review also highlights the discrete functions of prebiotics against inflammation, autoimmunity, infection, physiologic overloading mechanism, and aging-associated loss of metabolism in MSD.
Collapse
Affiliation(s)
- Dinesh Kumar Lakshmanan
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu 638402, India; Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Guna Ravichandran
- Centre for Biomedical and Molecular Biology Research, Vinayaka Mission's Medical College & Hospital (VMMCH), Vinayaka Mission's Research Foundation (VMRF), Karaikal, India
| | - Abbirami Elangovan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Arul Ananth D
- Department of Biotechnology, The American College Madurai, Tamil Nadu, India
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| |
Collapse
|
2
|
Ma K, Su B, Li F, Li J, Nie J, Xiong W, Luo J, Huang S, Zhou T, Liang X, Li F, Deng J, Tan C. Maternal or post-weaning dietary fructo-oligosaccharide supplementation reduces stillbirth rate of sows and diarrhea of weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:155-164. [PMID: 38774024 PMCID: PMC11107255 DOI: 10.1016/j.aninu.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 05/24/2024]
Abstract
Fructo-oligosaccharides (FOS) are well-known prebiotics that have the potential to improve sow reproductive performance and increase piglet growth. However, previous studies were observed in sole FOS-supplemented diets of sows or weaned piglets and did not consider the sow-to-piglet transfer effect on the performance and diarrhea rate of weaned piglets. This study explores the effects of dietary FOS supplementation on the reproductive performance of sows, and the effects of FOS supplementation at different stages on the growth performance and diarrhea rate of weaned piglets. A split-plot experimental design was used with sow diet effect in the whole plot and differing piglet diet effect in the subplot. Fifty-two multiparous sows (223.24 ± 14.77 kg) were randomly divided into 2 groups (0 or 0.2% FOS). The experiment lasted from day 85 of gestation to day 21 of lactation. Reproductive performance, glucose tolerance, placental angiogenesis, and intestinal flora of sows were assessed. At weaning, 192 weaned piglets were grouped in 2 × 2 factorial designs, with the main effects of FOS supplemental level of sow diet (0 and 0.2%), and FOS supplemental level of weaned piglet diet (0 and 0.2%), respectively. The growth performance and diarrhea rate of the weaned piglets were analyzed during a 28-d experiment. Maternal dietary supplementation of FOS was shown to reduce the stillbirth and invalid piglet rates (P < 0.05), improve the insulin sensitivity (P < 0.05) and fecal scores (P < 0.05) of sows, increase the abundance of Akkermansia muciniphila (P = 0.016), decrease the abundance of Escherichia coli (P = 0.035), and increase the isovalerate content in feces (P = 0.086). Meanwhile, the placental angiogenesis marker CD31 expression was increased in sows fed FOS diet (P < 0.05). Moreover, maternal and post-weaning dietary FOS supplementation reduced the diarrhea rate of weaned piglets (P < 0.05) and increased the content of short-chain fatty acids in feces (P < 0.05). Furthermore, only post-weaning dietary FOS supplementation could improve nutrient digestibility of weaned piglets (P < 0.05). Collectively, FOS supplementation in sows can reduce stillbirth rate, perinatal constipation, and insulin resistance, as well as improve placental vascularization barrier. Additionally, maternal and post-weaning dietary FOS supplementation reduced the diarrhea rate of weaned piglets, but only FOS supplementation in piglets alone at weaning stage could improve their nutrient digestibility.
Collapse
Affiliation(s)
- Kaidi Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Su
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fuyong Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jinfeng Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiawei Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyu Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jinxi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Zhou
- Guangzhou Pucheng Biological Technology Co., Guangzhou, 511300, China
| | - Xide Liang
- Baolingbao Biology Co., Ltd, Dezhou, 251200, China
| | - Facai Li
- Baolingbao Biology Co., Ltd, Dezhou, 251200, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
3
|
Gilbert MS, Cai Y, Folkerts G, Braber S, Gerrits WJJ. Effects of nondigestible oligosaccharides on inflammation, lung health, and performance of calves. J Dairy Sci 2024; 107:2900-2915. [PMID: 38101737 DOI: 10.3168/jds.2023-23887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
Our objective was to determine the effects of nondigestible oligosaccharides (NDO) on lung health and performance. Three hundred male Holstein-Friesian calves aged 18.0 ± 3.6 d received 1 of 6 treatments for 8.5 wk (period 1). Treatments included a negative control (CON), galacto-oligosaccharides (GOS) administered as a spray via the nose once daily (SPR), GOS administered via the milk replacer (MR) at 1% (GOS-L) and 2% (GOS-H), fructo-oligosaccharides administered via the MR at 0.25% (FOS) and a combination of GOS and fructo-oligosaccharides administered via the MR at 1% and 0.25%, respectively (GOS-FOS). Milk replacer was fed twice daily. Feeding levels were equal between calves and increased progressively in time. Body weight was measured every 4 wk and clinical health was scored weekly. Blood and broncho-alveolar lavage fluid (BALF) samples were collected bi-weekly from a subset of calves (n = 120). After period 1, all calves received the same control MR for 18 wk until slaughter (period 2), during which general performance and clinical health were measured. Generally, infection pressure was high, with clinical scores and BALF proinflammatory TNFα concentrations increasing with time in period 1, which resulted in a high number of required group antimicrobial treatments (6 group antimicrobial treatments in 13 wk, supplied to all calves). Average daily gain adjusted to equal solid feed intake was increased for GOS-L (+61 g/d) compared with CON calves from experimental wk 1 to 5. Plasma white blood cell concentration tended to be lowered by GOS-L, plasma IL-8 concentration was reduced by all orally supplemented NDO, plasma IL-6 was reduced by all NDO treatments except GOS-FOS and plasma IL-1β was reduced by all NDO treatments compared with CON, although this differed per time point for SPR. The neutrophil percentage in BALF was reduced by GOS-L in wk 6, which was associated with a relative increase in macrophages. The BALF concentration of TNFα and IL-8 was reduced or tended to be reduced by GOS-L and GOS-H, while IL-6 was or tended to be reduced by SPR, GOS-L, GOS-H, and GOS-FOS, and IL-1β was reduced by SPR, GOS-L, GOS-H, and FOS. Generally, feeding the combination of GOS and FOS was not more effective than feeding GOS or FOS alone, because feeding GOS-FOS resulted in higher concentrations of plasma and BALF cytokine and chemokine concentrations compared with feeding GOS-L alone, and resulted in higher plasma cytokine concentrations compared with feeding FOS alone. None of the BALF and plasma cytokine or chemokine concentrations differed between the GOS-L and GOS-H treatment. Performance and clinical scores in period 2 did not differ among treatments. Altogether, all tested NDO reduced systemic and lung inflammation in calves under high natural infection pressure and for GOS-fed calves, this increased performance during the first 4 wk. Combining GOS and FOS did not have a synergistic effect. The intranasal administration of GOS also lowered systemic and lung inflammation, but tended to negatively affect performance. Overall, this study demonstrates the potential of NDO to alleviate systemic and respiratory inflammation in calves.
Collapse
Affiliation(s)
- M S Gilbert
- Animal Nutrition Group, Wageningen University and Research, 6700 AH, Wageningen, the Netherlands.
| | - Y Cai
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Division of Pharmacology, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - G Folkerts
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Division of Pharmacology, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - S Braber
- Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Division of Pharmacology, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - W J J Gerrits
- Animal Nutrition Group, Wageningen University and Research, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
4
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Prebiotic Supplements on the Gastrointestinal Microbiota and Associated Health Parameters in Pigs. Animals (Basel) 2023; 13:3012. [PMID: 37835619 PMCID: PMC10572080 DOI: 10.3390/ani13193012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Establishing a balanced and diverse microbiota in the GIT of pigs is crucial for optimizing health and performance throughout the production cycle. The post-weaning period is a critical phase, as it is often associated with dysbiosis, intestinal dysfunction and poor performance. Traditionally, intestinal dysfunctions associated with weaning have been alleviated using antibiotics and/or antimicrobials. However, increasing concerns regarding the prevalence of antimicrobial-resistant bacteria has prompted an industry-wide drive towards identifying natural sustainable dietary alternatives. Modulating the microbiota through dietary intervention can improve animal health by increasing the production of health-promoting metabolites associated with the improved microbiota, while limiting the establishment and proliferation of pathogenic bacteria. Prebiotics are a class of bioactive compounds that resist digestion by gastrointestinal enzymes, but which can still be utilized by beneficial microbes within the GIT. Prebiotics are a substrate for these beneficial microbes and therefore enhance their proliferation and abundance, leading to the increased production of health-promoting metabolites and suppression of pathogenic proliferation in the GIT. There are a vast range of prebiotics, including carbohydrates such as non-digestible oligosaccharides, beta-glucans, resistant starch, and inulin. Furthermore, the definition of a prebiotic has recently expanded to include novel prebiotics such as peptides and amino acids. A novel class of -biotics, referred to as "stimbiotics", was recently suggested. This bioactive group has microbiota-modulating capabilities and promotes increases in short-chain fatty acid (SCFA) production in a disproportionally greater manner than if they were merely substrates for bacterial fermentation. The aim of this review is to characterize the different prebiotics, detail the current understating of stimbiotics, and outline how supplementation to pigs at different stages of development and production can potentially modulate the GIT microbiota and subsequently improve the health and performance of animals.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| |
Collapse
|
5
|
Guo S, Ma J, Xing Y, Xu Y, Jin X, Yan S, Shi L, Zhang L, Shi B. Effects of Artemisia annua L. Water Extract on Growth Performance and Intestinal Related Indicators in Broilers. J Poult Sci 2023; 60:2023024. [PMID: 37711228 PMCID: PMC10495255 DOI: 10.2141/jpsa.2023024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
Artemisia annua L. is a natural herb with a variety of bioactive substances, which can play a variety of biological functions such as anti-inflammatory, antioxidant, antibacterial and antiviral, and can be used as a potential feed additive. The purpose of this study was to investigate the effects of different doses of Artemisia annua L. water extract (AAWE) on growth performance and intestinal related indicators in broilers. A total of 200 one-day-old Arbor Acre broilers were selected and randomly divided into five treatment groups, with five replicates in each group and eight birds per replicate. The control group was fed a basal diet, whereas the other groups were fed a basal diet supplemented with 0.5, 1.0, 1.5, or 2.0 g/kg AAWE. On d 21, with the increase in AAWE dose, final body weight and feed efficiency showed a quadratic increase effect, whereas feed intake showed a linear reduction effect; however, the apparent metabolic rate of dry matter, crude protein, and ether extract increased quadratically on d 42. In addition, the activity of duodenal chymotrypsin and trypsin, and of jejunal lipase quadratically increased, whereas the intestine crypt depth linearly decreased on d 42. The number of total anaerobic bacteria increased quadratically, whereas the number of Escherichia coli decreased quadratically. The number of Lactobacillus increased linearly, whereas H2S emission linearly decreased on d 21; moreover, NH3 emission (24 h) quadratically decreased on d 42. In conclusion, AAWE promoted the growth performance and intestinal related indicators of broilers.
Collapse
Affiliation(s)
- Shiwei Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Jiaxin Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Yuanyuan Xing
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Yuanqing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Sumei Yan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Lulu Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Linghui Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot,
010018, P. R. China
| |
Collapse
|
6
|
Galacto-Oligosaccharides Increase the Abundance of Beneficial Probiotic Bacteria and Improve Gut Architecture and Goblet Cell Expression in Poorly Performing Piglets, but Not Performance. Animals (Basel) 2023; 13:ani13020230. [PMID: 36670770 PMCID: PMC9854465 DOI: 10.3390/ani13020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Poorly performing piglets receiving commercial milk replacers do not benefit from the naturally occurring probiotic galacto-oligosaccharides otherwise found in sow milk. Study objectives were to investigate the effects of complete milk replacer supplemented with galacto-oligosaccharides on the microbiome, gut architecture and immunomodulatory goblet cell expression of poorly performing piglets that could benefit from milk replacement feeding when separated from sows and housed with fit siblings in environmentally controlled pens. The study is novel in that it is one of the first to investigate the effects of supplementing complete milk replacer with galacto-oligosaccharides in poorly performing piglets. Gastrointestinal tract samples were collected from piglets, and the microbiome composition was assessed by 16s ribosomal ribonucleic acid gene sequencing. Gut architectural features, villus/crypt ratio and enumeration of goblet cells in tissues were assessed by histopathological techniques. The most abundant taxa identified at the genus level were Lactobacillus, Streptococcus, Prevotella, Lactococcus and Leuconostoc. Milk replacer plus galacto-oligosaccharides significantly improved gut architectural features and villus/crypt ratio throughout the gastrointestinal tract, increased the number of goblet cells and revealed a differential abundance of beneficial probiotic bacteria, particularly Lactobacillus and Bifidobacterium. In these respects, galacto-oligosaccharide-supplemented milk replacer may be a useful addition to animal husbandry in poorly performing, non-thriving animals when moved to environmentally controlled pens away from sows and fit siblings, thereby modulating the microbiome and gastrointestinal tract performance.
Collapse
|
7
|
Tian S, Wang J, Gao R, Wang J, Zhu W. Early-life galacto-oligosaccharides supplementation alleviates the small intestinal oxidative stress and dysfunction of lipopolysaccharide-challenged suckling piglets. J Anim Sci Biotechnol 2022; 13:70. [PMID: 35655292 PMCID: PMC9164537 DOI: 10.1186/s40104-022-00711-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Galacto-oligosaccharides (GOS) are non-digestible food ingredients that promote the growth of beneficial bacteria in the gut. This study investigated the protective effect of the early-life GOS supplement on the piglets' gut function against the oxidative stress induced by lipopolysaccharide (LPS)-challenge. METHODS Eighteen neonatal piglets were assigned to three groups including CON, LPS and LPS + GOS groups. The piglets in CON group and LPS group received physiological saline, while those in LPS + GOS group received GOS solution for 13 d after birth. On d 14, the piglets in LPS group and LPS + GOS group were injected with LPS solutions, while the piglets in CON group were injected with the same volume of physiological saline. RESULTS The results showed that the early-life GOS supplement blocked the LPS-induced reactive oxygen species (ROS) secretion, malondialdehyde (MDA) production and the increase of pro-apoptotic factor expression. Meanwhile, the early-life GOS supplement improved the activities of antioxidant enzymes, disaccharidase enzymes activities, and digestive enzymes activities, and increased the mRNA abundance of the gene related to nutrient digestion and absorption and the relative protein expression of tight junction. The study also showed that the early-life GOS supplement improved the expression of Hemeoxygenase-1 (HO-1) and NAD(P)H/quinone acceptor oxidoreductase-1 (NQO-1), and activated the AMP-activated protein kinase (AMPK). CONCLUSIONS These results suggested that GOS enhanced the gut function, reduced the ROS production and pro-apoptotic factors gene expression, and activated the AMPK signaling pathway in LPS-challenged piglets.
Collapse
Affiliation(s)
- Shiyi Tian
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jue Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ren Gao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Tian S, Wang J, Gao R, Wang J, Zhu W. Galacto-oligosaccharides directly attenuate lipopolysaccharides-induced inflammatory response, oxidative stress and barrier impairment in intestinal epithelium. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
9
|
Liu D, Liu DC, Fan H, Wang Y. Lactobacillus fermentum CQPC08 Attenuates Exercise-Induced Fatigue in Mice Through Its Antioxidant Effects and Effective Intervention of Galactooligosaccharide. Drug Des Devel Ther 2021; 15:5151-5164. [PMID: 34992351 PMCID: PMC8714972 DOI: 10.2147/dddt.s317456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/18/2021] [Indexed: 12/02/2022] Open
Abstract
Aim The purpose of this study is to study the antioxidant effect of Lactobacillus fermentum CQPC08 (CQPC08) on exercise-induced fatigue, and the beneficial intervention of GOS on CQPC08. Methods We use the treadmill to establish a fatigue model caused by exercise, and perform drug treatment after exercise. We tested the exhaustive exercise time of mice; investigated the changes of mice body weight, liver index, histopathology, serum biochemical indicators and mRNA expression levels of oxidative and inflammation-related genes; and assessed the potential fatigue inhibitory effect of CQPC08, and the anti-oxidation effect of the combination of GOS and CQPC08. Results The results suggest that CQPC08 and combination with GOS reduces fatigue-induced oxidative damage of the liver, and it decreases blood urea nitrogen (BUN), lactic acid (LA), glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), malonaldehyde (MDA), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in serum. Higher levels of serum catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were found. Treatment with the CQPC08 and combination with GOS correlates with lower relative mRNA expression levels of neuronal NOS (nNOS), iNOS, and TNF-α, and with higher mRNA expression levels of catalase and copper/zinc (Cu/Zn) and manganese (Mn) SOD enzymes in the liver and muscles. Conclusion These results suggest that CQPC08 can resolve exercise-induced fatigue by improving antioxidant ability in mice, and the combination of GOS and CQPC08 enhances this ability of CQPC08.
Collapse
Affiliation(s)
- Dong Liu
- Development Chongqing University of Education, Chongqing, People’s Republic of China
- Education Major in Physical Education, University of Perpetual Help System DALTA Las Pinas, Manila, Philippines
| | - Da Chuan Liu
- Student Affairs Department, Jiangmen Preschool Education College, Jiangmen, Guangdong, People’s Republic of China
| | - Hao Fan
- School of Tourism and Service Management, Chongqing University of Education, Chongqing, People’s Republic of China
- Cultural Industries and Cultural Policy, Yuan Ze University, Taoyuan, Taiwan
| | - Yu Wang
- Orthopedics Department, General Hospital of Northern Theatre Command, Liaoning Province, People’s Republic of China
- Correspondence: Yu Wang Orthopedics Department, General Hospital of Northern Theatre Command, No. 83 Wenhua Road, Shenhe District, Shenyang, Liaoning Province, 110016, People’s Republic of ChinaTel +86-18609886338 Email
| |
Collapse
|
10
|
Differential effects of early-life and post-weaning galactooligosaccharides intervention on colonic bacterial composition and function in weaning piglets. Appl Environ Microbiol 2021; 88:e0131821. [PMID: 34705551 DOI: 10.1128/aem.01318-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, we have proved that the early-life galactooligosaccharides (GOS) intervention could improve the colonic function by altering the bacterial composition in the suckling piglets. However, whether the early-life GOS (ELG) intervention could have a long influence of the colonic microbiota, and the ELG and post-weaning GOS (PWG) combined intervention would have an interaction effect on maintaining colonic health in weaning piglets remain to be explored. Thus in this study, we illustrated the differential effect of ELG and PWG intervention on colonic microbiota and colonic function of weaning piglets. Our results showed that both the ELG and PWG intervention decreased the diarrhea frequency of weaning piglets, while the PWG intervention increased colonic indexes. After 16S rRNA MiSeq sequencing of gut bacteria belonged to colonic niches (mucosa and digesta), the PWG increased the α-diversity of colonic mucosal bacteria was revealed. In addition, we found both the ELG and PWG intervention enriched the abundance of short chain fatty acids (SCFAs) producer in different colonic niches and increased total SCFAs concentrations in colonic digesta. These changes selectively modulated the mRNA expression of pattern recognition receptors and barrier proteins in the colonic mucosa. Of note, the combined effect of ELG and PWG effectively enhanced colonic SCFAs producer enrichment and up-regulated the butyrate concentration. Meanwhile, the gene expression of MyD88-NFκB signaling and the pro-inflammatory cytokines contents were markedly reduced under the combined effect of ELG and PWG. Importance Reducing the disorders of gut ecosystem is an effective way to relieve weaning stresses of piglets and save economic losses in the modern swine industry. To this end, prebiotics were often added in diet during the weaning transition. In present study, we demonstrated that the ELG and PWG intervention had shown different effects on the bacterial composition of different colonic niches and colonic function in the weaning piglets. Especially under the combined effect of ELG and PWG intervention, the gene expression of MyD88-NFκB signaling and the contents of pro-inflammation cytokines decreased with the increasing concentration of butyrate, which is one of the important microbial metabolites in the colon of weaning piglets. These findings further provided new insights into nutritional interventions to alleviate intestinal ecosystem dysbiosis and gut dysfunction in the piglets during the weaning transition.
Collapse
|
11
|
Santos EV, Fontes DO, Benfato MDS, Hackenhaar FS, Salomon T, Jacob DV, Prévéraud D, Araujo WAG, da Glória EM, Domingos RL, Lopes IMG, Guedes LLM, Lima VR, Cardoso LA, Silva BAN. Mycotoxin deactivator improves performance, antioxidant status, and reduces oxidative stress in nursery pigs fed diets containing mycotoxins. J Anim Sci 2021; 99:6380201. [PMID: 34599328 DOI: 10.1093/jas/skab277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Ingestion of mycotoxins can result in many problems, including decreased growth rates and immune suppression. The present study aimed to evaluate the impact of the supplementation of a mycotoxin deactivator composed by adsorbent clay minerals; inactivated fermentation extracts of Saccharomyces cerevisiae; and blend of antioxidants, organic acids, and botanicals in diets containing added mycotoxins for nursery pigs on their performance and antioxidant status. Ninety pigs weaned with 24 d of age (7.12 ± 0.68 kg of BW) were used. Pigs were housed in pens of three animals each according to body weight, litter origin, and sex. The dietary treatments consisted of feeding the pigs with a standard control diet as negative control (NC; mycotoxin levels at accepted regulatory Brazilian Ministry of Agriculture standards; deoxynivalenol (DON): <100 μg/kg; zearalenone (ZEA): <20 μg/kg; fumonisins (FB): <1 mg/kg); the standard diet added with mycotoxins to reach a low contamination level is considered as positive low (PCL-; DON: 900 μg/kg; ZEA: 100 μg/kg; FB: 5,000 μg/kg) without deactivator; a positive low added the deactivator at an inclusion rate of 1 kg/ton (PCL+); the standard diet added with mycotoxins to reach a high contamination level is considered as positive high (PCH-; DON: 4,500 μg/kg; ZEA: 500 μg/kg; FB: 18,000 μg/kg) without the deactivator; and a positive high added the deactivator at an inclusion rate of 5 kg/ton (PCH+). Pigs were individually weighed at the beginning and at the end of each phase and feed intake recorded based on daily pen intake during the experiment. On days 7, 19, 34, and 43 post-weaning, blood samples were drawn for antioxidant analyses. Antioxidant enzymes (glutathione peroxidase [GPx] and total superoxide dismutase [TSOD]), vitamins [Vit A, E, and C], and malondialdehyde [MDA]) were evaluated in erythrocyte and plasma samples. Pigs challenged with mycotoxins presented lower performance traits, decrease in the efficiency of central antioxidant systems (↓GPx, ↓TSOD, ↓Vit A, ↓Vit E, and ↓Vit C), and a higher oxidative damage to lipids (↑MDA) when compared with the control and deactivator-associated treatments. Our findings showed that the use of a mycotoxin deactivator can mitigate the negative impacts on performance and oxidative stress when animals are subjected to diets contaminated by different levels of mycotoxins.
Collapse
Affiliation(s)
- Erika Vivian Santos
- Institute of Agricultural Sciences/ICA, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, 39404-547, Brazil.,Veterinary School/VET, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Dalton Oliveira Fontes
- Veterinary School/VET, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Mara da Silveira Benfato
- Institute of Biosciences/IBIO, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90650-001, Brazil
| | - Fernanda Schäfer Hackenhaar
- Institute of Biosciences/IBIO, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90650-001, Brazil
| | - Tiago Salomon
- Institute of Biosciences/IBIO, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90650-001, Brazil
| | | | | | - Wagner Azis Garcia Araujo
- Animal Science Unit, Instituto Federal de Educação, Ciência e Tecnologia Norte de Minas Gerais (IFNMG), Januária, Minas Gerais, 39480-000, Brazil
| | - Eduardo Maria da Glória
- Biological Science Department, College of Agriculture Luiz de Queiroz/ESALQ, Universidade de São Paulo, 13418-900, Piracicaba, São Paulo, Brazil
| | | | - Idael Mateus Goes Lopes
- Institute of Agricultural Sciences/ICA, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, 39404-547, Brazil
| | - Lis Lorena Melúcio Guedes
- Institute of Agricultural Sciences/ICA, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, 39404-547, Brazil
| | - Valesca Ribeiro Lima
- Institute of Agricultural Sciences/ICA, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, 39404-547, Brazil
| | - Larissa Alves Cardoso
- Institute of Agricultural Sciences/ICA, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, 39404-547, Brazil
| | - Bruno Alexander Nunes Silva
- Institute of Agricultural Sciences/ICA, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, 39404-547, Brazil
| |
Collapse
|
12
|
Upadhaya SD, Kim IH. The Impact of Weaning Stress on Gut Health and the Mechanistic Aspects of Several Feed Additives Contributing to Improved Gut Health Function in Weanling Piglets-A Review. Animals (Basel) 2021; 11:ani11082418. [PMID: 34438875 PMCID: PMC8388735 DOI: 10.3390/ani11082418] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The current review aimed to provide an overview on the problems associated with weaning with a special focus on gut health, and also highlighted the nutritional approach using different kinds of feed additives and their mechanistic aspects in mitigating production inefficiencies and gut health dysfunction in weanling pigs. Abstract Newly weaned pig encounters psychosocial, physical, and nutritional stressors simultaneously when their immune system is not fully developed. These stressors have a cumulative effect on the immune response that contributes to the post-weaning growth lag which is characterized by depression in feed intake, reduced or negative growth rates, and increased susceptibility to pathogens in the first 24 to 48 h post-weaning. Consequently, the intestinal integrity, and digestive and absorptive capacity are impaired, and there is an increase in intestinal oxidative stress. It also causes the shifts in the taxonomic and functional properties of intestinal microbiome abruptly, thereby adversely affecting the health and performance of animals. It has been suggested that the effects of weaning stress on immune functions, intestinal barrier functions, and nervous system function in early weaned pigs extends into adulthood. The inclusion of different types of feed additives into the diet have been reported to alleviate the negative effects of weaning stress. The objective of this paper was to provide an overview on how the weaning stress affects gut health and the impact it has on production efficiencies, as well as the mechanistic aspects of several feed additives applied in reducing the weaning associated gut health problems and performance inefficiencies.
Collapse
Affiliation(s)
| | - In-Ho Kim
- Correspondence: ; Tel.: +82-41-550-3652; Fax: +82-41-565-2949
| |
Collapse
|
13
|
Hutchins DA, Noh J, Kenealey JD. Activity, stability, and binding capacity of β-galactosidase immobilized on electrospun nylon-6 fiber membrane. J Dairy Sci 2021; 104:3888-3898. [PMID: 33589258 DOI: 10.3168/jds.2020-19453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
In this research, we explored various immobilized enzyme support materials, including the novel nylon-6 fiber membrane (NFM), and evaluated the increase in surface area and its effect on enzyme binding potential. We also manipulated incubation and reaction conditions and assessed the subsequent effects on activity and stability of β-galactosidase, with comparisons between various solid support materials and free (dissolved) enzyme. Nylon-6 fiber membranes were created by electrospinning and were compared with other materials as solid supports for enzyme binding. The other materials included polyvinylidene fluoride 5-kDa nanofiltration dairy membranes, nylon-6 pellets, and silica glass beads. Scanning electron microscopy revealed the large surface area of NFM, which correlated with greater enzyme activity compared with the relatively flatter surfaces of the other solid support materials. Enzyme activity was measured spectrophotometrically with the color-changing substrate o-nitrophenyl-β-d-galactopyranoside. Compared with the other solid supports, NFM had greater maximum enzyme binding potential. Across pH conditions ranging from 3.5 to 6.0 (including the optimal pH of 4.0-5.0), enzyme activity was maintained on the membrane-immobilized samples, whereas free enzyme did not maintain activity. Altering the storage temperature (4, 22, and 50°C) affected enzyme stability (i.e., the ability of the enzyme to maintain activity over time) of free and polyvinylidene fluoride membrane samples. However, NFM samples maintained stability across the varying storage temperatures. Increasing the immobilization solution enzyme concentration above the maximum enzyme binding capacity had no significant effect on enzyme stability for membrane-immobilized samples; however, both had lower mean stability than free enzyme by approximately 74%. With further development, β-galactosidase immobilized on NFM or other membranes could be used in continuous processing in the dairy industry for a combination of filtration and lactose hydrolysis-creating products that are reduced in lactose and increased in sweetness, with no requirement for "added sugars" on the nutrition label and no enzyme listed as final product ingredient.
Collapse
Affiliation(s)
- D A Hutchins
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602
| | - J Noh
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602
| | - J D Kenealey
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602.
| |
Collapse
|
14
|
Zheng L, Duarte ME, Sevarolli Loftus A, Kim SW. Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention. Front Vet Sci 2021; 8:628258. [PMID: 33644153 PMCID: PMC7906973 DOI: 10.3389/fvets.2021.628258] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
The primary goal of nursery pig management is making a smooth weaning transition to minimize weaning associated depressed growth and diseases. Weaning causes morphological and functional changes of the small intestine of pigs, where most of the nutrients are being digested and absorbed. While various stressors induce post-weaning growth depression, the abrupt change from milk to solid feed is one of the most apparent challenges to pigs. Feeding functional feed additives may be viable solutions to promote the growth of nursery pigs by enhancing nutrient digestion, intestinal morphology, immune status, and by restoring intestinal balance. The aim of this review was to provide available scientific information on the roles of functional feed additives in enhancing intestinal health and growth during nursery phase. Among many potential functional feed additives, the palatability of the ingredient and the optimum supplemental level are varied, and these should be considered when applying into nursery pig diets. Considering different stressors pigs deal with in the post-weaning period, research on nutritional intervention using a single feed additive or a combination of different additives that can enhance feed intake, increase weight gain, and reduce mortality and morbidity are needed to provide viable solutions for pig producers. Further research in relation to the feed palatability, supplemental level, as well as interactions between different ingredients are needed.
Collapse
Affiliation(s)
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|