1
|
Pereira dos Santos VH, Coelho Neto DM, Lacerda Júnior V, Borges WDS, de Oliveira Silva E. Fungal Biotransformation: An Efficient Approach for Stereoselective Chemical Reactions. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201111203506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is great interest in developing chemical technologies to achieve regioselective
and stereoselective reactions since only one enantiomer is required for producing the
chiral leads for drug development. These selective reactions are provided by traditional
chemical synthetic methods, even under expensive catalysts and long reaction times. Filamentous
fungi are efficient biocatalysts capable of catalyzing a wide variety of reactions with
significant contributions to the development of clean and selective processes. Although some
enzymes have already been employed in isolated forms or as crude protein extracts as catalysts
for conducting selective reactions, the use of whole-cell provides advantages regarding
cofactor regenerations. It is also possible to carry out conversions at chemically unreactive
positions and to perform racemic resolution through microbial transformation. The current
literature contains several reports on the biotransformation of different compounds by fungi, which generated chemical
analogs with high selectivity, using mild and eco-friendly conditions. Prompted by the enormous pharmacological
interest in the development of stereoselective chemical technologies, this review covers the biotransformations catalyzed
by fungi that yielded chiral products with enantiomeric excesses published over the period 2010-2020. This
work highlights new approaches for the achievement of a variety of bioactive chiral building blocks, which can be a
good starting point for the synthesis of new compounds combining biotransformation and synthetic organic chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Eliane de Oliveira Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
2
|
Chen W, Fisher MJ, Leung A, Cao Y, Wong LL. Oxidative Diversification of Steroids by Nature-Inspired Scanning Glycine Mutagenesis of P450BM3 (CYP102A1). ACS Catal 2020. [DOI: 10.1021/acscatal.0c02077] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wenyu Chen
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K
| | - Matthew J. Fisher
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K
| | - Aaron Leung
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K
| | - Yang Cao
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K
- Oxford Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Jiangsu 215123, P.R. China
| | - Luet L. Wong
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K
- Oxford Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Jiangsu 215123, P.R. China
| |
Collapse
|
3
|
Albarrán-Velo J, González-Martínez D, Gotor-Fernández V. Stereoselective biocatalysis: A mature technology for the asymmetric synthesis of pharmaceutical building blocks. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1340457] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Daniel González-Martínez
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Biotechnology Institute of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| |
Collapse
|