1
|
Silva TAFDA, Silva PEDACE, Nascimento TP, Costa RMPB, Converti A, Porto ALF, Bezerra RP. Cost-effective fibrinolytic enzyme production by microalga Dunaliella tertiolecta using medium supplemented with corn steep liquor. AN ACAD BRAS CIENC 2023; 95:e20220552. [PMID: 37585969 DOI: 10.1590/0001-3765202320220552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/01/2022] [Indexed: 08/18/2023] Open
Abstract
A fibrinolytic enzyme from the microalga Dunaliella tertiolecta was produced under mixotrophic conditions using different corn steep liquor (CSL) concentrations ( 0 ≤ CLS ≤ 0.75%), purified using a combination of salting out and ion-exchange chromatography, and then biochemical characterized. Cultivation of this microalga using 0.5% CSL led to the highest maximum cell concentration (1.960±0.010 mg L-1) and cell productivity (0.140g L-1 day-1), besides a high fibrinolytic activity of the extract obtained by the homogenization method (102 ±1 U mL-1). The enzyme extracted from the microalgal biomass was 5-fold purified with a 20% yield and was found to have a specific activity of 670 U mg-1. The enzyme, whose molecular weight determined by fibrin zymography was 10 kDa, was shown to be stable at pH 3.0-9.0 and up to 70°C with optimal pH and temperature values of 8.0 and 50°C, respectively. When compared to other fibrinolytic enzymes, this protease stood out for its high fibrinolytic activity, which was enhanced by Fe2+, inhibited by Zn2+, Cu2+, Mg2+, and Ca2+, and strongly inhibited by phenylmethylsulfonyl fluoride, suggesting that it belongs to the serine metalloprotease family. Moreover, thanks to its thermal stability, the enzyme may be easily preserved and activated under high-temperature conditions.
Collapse
Affiliation(s)
- Túlio A F DA Silva
- Federal Rural University of Pernambuco-UFRPE, Department of Animal Morphology and Physiology, Dom Manoel de Medeiros Ave., s/n, Dois irmãos, 52171-900 Recife, PE, Brazil
| | - Páblo E DA C E Silva
- Federal University of Pernambuco-UFPE, Laboratory of Immunopathology Keizo Asami (LIKA), Prof. Moraes Ave., s/n, Várzea, 50670-901 Recife, PE, Brazil
| | - Thiago P Nascimento
- Federal University of Piauí, Campus Professora Cinobelina Elvas, Br 135, Km 3, Planalto Horizonte, 64900-000 Bom Jesus, PI, Brazil
| | - Romero M P B Costa
- University of Pernambuco-UPE, Institute of Biological Sciences, 310, Arnóbio Marquês St., Santo Amaro, 50100-130 Recife, PE, Brazil
| | - Attilio Converti
- University of Genoa, Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, via Opera Pia 15, 16145, 50100-130 Genoa, Italy
| | - Ana Lúcia F Porto
- Federal Rural University of Pernambuco-UFRPE, Department of Animal Morphology and Physiology, Dom Manoel de Medeiros Ave., s/n, Dois irmãos, 52171-900 Recife, PE, Brazil
- Federal University of Pernambuco-UFPE, Laboratory of Immunopathology Keizo Asami (LIKA), Prof. Moraes Ave., s/n, Várzea, 50670-901 Recife, PE, Brazil
| | - Raquel P Bezerra
- Federal Rural University of Pernambuco-UFRPE, Department of Animal Morphology and Physiology, Dom Manoel de Medeiros Ave., s/n, Dois irmãos, 52171-900 Recife, PE, Brazil
| |
Collapse
|
2
|
Umay B, Gül A, Tanyıldızı MŞ. Isolation, identification, and optimization of the fibrinolytic protease-producing strains. Arch Microbiol 2023; 205:135. [PMID: 36961583 DOI: 10.1007/s00203-023-03486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023]
Abstract
Cardiovascular complications due to thrombosis have become one of the main causes of death worldwide. The high cost and undesirable side effects of existing thrombolytic agents have led researchers to isolate potential strains that produce fibrinolytic enzymes for therapeutic applications. Fibrinolytic enzymes, especially of microbial origin, are recognized as potential therapeutic candidates for thrombosis. In this study, isolation, identification, and optimization of fibrinolytic protease enzyme-producing strains were performed using fermentative protein sources. Fibrinolytic protease-producing strains were selected by analyzing the isolated strains on skim milk agar medium. The selected strains were examined on blood agar and fibrin plate medium, and the ones showing high enzymatic activity were determined. The strain determined to have the highest activity was identified as Acinetobacter johnsonii TR01 by 16S rRNA analysis. The maximum fibrinolytic protease production of the strain occurred at 60 °C and pH 7.0. Under different medium conditions used for enzyme production, fructose was found to be the best carbon source, while yeast extract and peptone were the best nitrogen sources. It was observed that CaCl2, KH2PO4, and MgSO4 components had a negative effect, while MnCl2 and ZnC4H6O4 components had a positive effect on enzyme production. The medium composition for maximum enzyme activity (8.30 IU/ml) determined by Response Surface Methodology was 14.22 g/L fructose, 11.190 g/L yeast extract, 14.22 g/L peptone, 0.5 g/L MnCl2, and 0.5 g/L ZnC4H6O4.
Collapse
Affiliation(s)
- Betül Umay
- Department of Biongineering, Faculty of Engineering, Fırat University, Elazıg, Turkey
| | - Abdulkadir Gül
- Department of Biongineering, Faculty of Engineering, Fırat University, Elazıg, Turkey.
| | | |
Collapse
|
3
|
Varol A, Albayrak S, Ozkan H, Demir Y, Taskin M, Adiguzel A. Production, purification and characterization of novel fibrinolytic enzyme from Bacillus atrophaeus V4. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Muniasamy R, Balamurugan BS, Rajamahendran D, Rathnasamy S. Switchable deep eutectic solvent driven micellar extractive fermentation of ultrapure fibrin digesting enzyme from Bacillus subtilis. Sci Rep 2022; 12:903. [PMID: 35042908 PMCID: PMC8766521 DOI: 10.1038/s41598-022-04788-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
Fibrinolytic protease (FLP) is a therapeutic enzyme used in the treatment of thrombolytic diseases. The present study proposed the concept of pH-driven swappable micellar two-phase extraction for the concurrent production and purification of FLP from Bacillus subtilis at cloud point extraction. Extractive fermentation was carried out with a pH swap mechanism and FLP was extracted to the top phase by surfactant deep eutectic solvents (SDES). Shrimp waste was chosen as a sustainable low-cost substrate that yielded a maximum protease of 185 U/mg. Six SDESs were synthesized with nonionic surfactants as hydrogen bond donors and quaternary ammonium salts as hydrogen bond acceptors and their association was confirmed by H1 NMR. Thermophysical investigation of the synthetic SDES was accomplished as a function of temperature. Response surface methodology for extractive fermentation was performed with the concentration of SADES (35% w/v), Na2SO4 (15% w/v) and pH (6.3) as variables and the enzyme activity (248 IU/mg) as a response. Furthermore, purification using gel filtration chromatography was used to quantify the amount of enzyme obtained in the extraction phase (849 IU/ml). After final purification with an anion exchange column, the maximum purity fold (22.32) with enzyme activity (1172 IU/ml) was achieved. The in-vitro fibrinolytic activity has been confirmed using a fibrin plate assay.
Collapse
Affiliation(s)
- Ramya Muniasamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India
| | - Bhavani Sowndharya Balamurugan
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India
| | - Devi Rajamahendran
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India
| | - Senthilkumar Rathnasamy
- Green Separation Engineering Laboratory, School of Chemical and Biotechnology, SASTRA Deemed To Be University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
5
|
Sharma C, Osmolovskiy A, Singh R. Microbial Fibrinolytic Enzymes as Anti-Thrombotics: Production, Characterisation and Prodigious Biopharmaceutical Applications. Pharmaceutics 2021; 13:1880. [PMID: 34834294 PMCID: PMC8625737 DOI: 10.3390/pharmaceutics13111880] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac disorders such as acute myocardial infarction, embolism and stroke are primarily attributed to excessive fibrin accumulation in the blood vessels, usually consequential in thrombosis. Numerous methodologies including the use of anti-coagulants, anti-platelet drugs, surgical operations and fibrinolytic enzymes are employed for the dissolution of fibrin clots and hence ameliorate thrombosis. Microbial fibrinolytic enzymes have attracted much more attention in the management of cardiovascular disorders than typical anti-thrombotic strategies because of the undesirable after-effects and high expense of the latter. Fibrinolytic enzymes such as plasminogen activators and plasmin-like proteins hydrolyse thrombi with high efficacy with no significant after-effects and can be cost effectively produced on a large scale with a short generation time. However, the hunt for novel fibrinolytic enzymes necessitates complex purification stages, physiochemical and structural-functional attributes, which provide an insight into their mechanism of action. Besides, strain improvement and molecular technologies such as cloning, overexpression and the construction of genetically modified strains for the enhanced production of fibrinolytic enzymes significantly improve their thrombolytic potential. In addition, the unconventional applicability of some fibrinolytic enzymes paves their way for protein hydrolysis in addition to fibrin/thrombi, blood pressure regulation, anti-microbials, detergent additives for blood stain removal, preventing dental caries, anti-inflammatory and mucolytic expectorant agents. Therefore, this review article encompasses the production, biochemical/structure-function properties, thrombolytic potential and other surplus applications of microbial fibrinolytic enzymes.
Collapse
Affiliation(s)
- Chhavi Sharma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| | - Alexander Osmolovskiy
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201313, India;
| |
Collapse
|
6
|
Diwan D, Usmani Z, Sharma M, Nelson JW, Thakur VK, Christie G, Molina G, Gupta VK. Thrombolytic Enzymes of Microbial Origin: A Review. Int J Mol Sci 2021; 22:10468. [PMID: 34638809 PMCID: PMC8508633 DOI: 10.3390/ijms221910468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/10/2023] Open
Abstract
Enzyme therapies are attracting significant attention as thrombolytic drugs during the current scenario owing to their great affinity, specificity, catalytic activity, and stability. Among various sources, the application of microbial-derived thrombolytic and fibrinolytic enzymes to prevent and treat vascular occlusion is promising due to their advantageous cost-benefit ratio and large-scale production. Thrombotic complications such as stroke, myocardial infarction, pulmonary embolism, deep venous thrombosis, and peripheral occlusive diseases resulting from blood vessel blockage are the major cause of poor prognosis and mortality. Given the ability of microbial thrombolytic enzymes to dissolve blood clots and prevent any adverse effects, their use as a potential thrombolytic therapy has attracted great interest. A better understanding of the hemostasis and fibrinolytic system may aid in improving the efficacy and safety of this treatment approach over classical thrombolytic agents. Here, we concisely discuss the physiological mechanism of thrombus formation, thrombo-, and fibrinolysis, thrombolytic and fibrinolytic agents isolated from bacteria, fungi, and algae along with their mode of action and the potential application of microbial enzymes in thrombosis therapy.
Collapse
Affiliation(s)
- Deepti Diwan
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO 63110, USA; (D.D.); (J.W.N.)
| | - Zeba Usmani
- Department of Applied Biology, University of Science & Technology, Techno City, Killing Road, Baridua 9th Mile 793101, Meghalaya, India; (Z.U.); (M.S.)
| | - Minaxi Sharma
- Department of Applied Biology, University of Science & Technology, Techno City, Killing Road, Baridua 9th Mile 793101, Meghalaya, India; (Z.U.); (M.S.)
| | - James W. Nelson
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO 63110, USA; (D.D.); (J.W.N.)
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK;
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Graham Christie
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Gustavo Molina
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, State University of Campinas, R. Monteiro Lobato, 80, Campinas, São Paulo 13083-862, Brazil;
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK;
- Centre for Safe and Improved Food, SRUC, Edinburgh EH9 3JG, UK
| |
Collapse
|
7
|
Altaf F, Wu S, Kasim V. Role of Fibrinolytic Enzymes in Anti-Thrombosis Therapy. Front Mol Biosci 2021; 8:680397. [PMID: 34124160 PMCID: PMC8194080 DOI: 10.3389/fmolb.2021.680397] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Thrombosis, a major cause of deaths in this modern era responsible for 31% of all global deaths reported by WHO in 2017, is due to the aggregation of fibrin in blood vessels which leads to myocardial infarction or other cardiovascular diseases (CVDs). Classical agents such as anti-platelet, anti-coagulant drugs or other enzymes used for thrombosis treatment at present could leads to unwanted side effects including bleeding complication, hemorrhage and allergy. Furthermore, their high cost is a burden for patients, especially for those from low and middle-income countries. Hence, there is an urgent need to develop novel and low-cost drugs for thrombosis treatment. Fibrinolytic enzymes, including plasmin like proteins such as proteases, nattokinase, and lumbrokinase, as well as plasminogen activators such as urokinase plasminogen activator, and tissue-type plasminogen activator, could eliminate thrombi with high efficacy rate and do not have significant drawbacks by directly degrading the fibrin. Furthermore, they could be produced with high-yield and in a cost-effective manner from microorganisms as well as other sources. Hence, they have been considered as potential compounds for thrombosis therapy. Herein, we will discuss about natural mechanism of fibrinolysis and thrombus formation, the production of fibrinolytic enzymes from different sources and their application as drugs for thrombosis therapy.
Collapse
Affiliation(s)
- Farwa Altaf
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Kim C, Ri K, Choe S. A novel fibrinolytic enzymes from the Korean traditional fermented food-Jotgal: Purification and characterization. J Food Biochem 2020; 44:e13255. [PMID: 32468603 DOI: 10.1111/jfbc.13255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
The fibrinolytic activity in Korean traditional fermented food, Jotgal (pickled fish) was identified. Though the fibrinolytic activity could vary in different kinds of Jotgal, this activity seems to be produced by microorganisms during the natural fermentation stage. From Gonjaengijot (pickled opossum shrimp), two novel fibrinolytic enzymes named by JP-I and JP-II, have been purified by ethanol precipitation, Bio-GEL P-100 gel filtration, and DEAE-cellulose ion-exchange chromatography. Compared to the crude enzyme extract, the specific activity of the JP-I and JP-II increased 258, 85-fold with the recovery of 22.1, 8.5%, respectively. The molecular weights of both enzymes were estimated as 36 kDa on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal condition for fibrinolytic activity of JP-I was at 50°C and pH 8.1, while that of JP-II was at 45°C and 9.9. Both enzymes were stable at a broad range of pH (5.0 to 10.5) and have metalloprotease nature. From these results, it concludes that these enzymes could be a novel potent thrombolytic agent. PRACTICAL APPLICATIONS: The fibrinolytic enzyme is one of the clinical agents for cardiovascular diseases which is the leading cause of morbidity and mortality worldwide with 17 million deaths every year. A variety of fibrinolytic enzymes are found and characterized from various sources such as plants, animals, and microorganisms, and new sources for fibrinolytic enzymes continue to be explored. Jotgal, widely used in Korean people's diet, is a traditional Korean seafood prepared from many different types of fishes, fish eggs, fish intestines, and shellfishes. Through an amount of research, some of fibrinolytic enzymes were found and purified from Jotgal, however, no studies have been done on fibrinolytic enzyme from opossum shrimp. In this study, the purification, enzymatic characteristics, and fibrinolytic activity of the proteases, originated from Korean traditional fermented food, Jotgal were reported. These enzymes could be novel potent thrombolytic agent.
Collapse
Affiliation(s)
- Cholho Kim
- Biological Industry Research Center, High-Technology Development Institution, Kim Il Sung University, Pyongyang, DPR Korea
| | - Kwangok Ri
- Biological Industry Research Center, High-Technology Development Institution, Kim Il Sung University, Pyongyang, DPR Korea
| | - Sunil Choe
- Biological Industry Research Center, High-Technology Development Institution, Kim Il Sung University, Pyongyang, DPR Korea.,School of Management, Harbin Institute of Technology, Harbin, China
| |
Collapse
|