1
|
Hasnaoui I, Mechri S, Dab A, Bentouhami NE, Abouloifa H, Bellaouchi R, Allala F, Saalaoui E, Jaouadi B, Noiriel A, Asehraou A, Abousalham A. Preparation and Biochemical Characterization of Penicillium crustosum Thom P22 Lipase Immobilization Using Adsorption, Encapsulation, and Adsorption-Encapsulation Approaches. Molecules 2025; 30:434. [PMID: 39942541 PMCID: PMC11821068 DOI: 10.3390/molecules30030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
This work describes the immobilization and the characterization of purified Penicillium crustosum Thom P22 lipase (PCrL) using adsorption, encapsulation, and adsorption-encapsulation approaches. The maximum activity of the immobilized PCrL on CaCO3 microspheres and sodium alginate beads was shifted from 37 to 45 °C, compared with that of the free enzyme. When sodium alginate was coupled with zeolite or chitosan, the immobilization yield reached 100% and the immobilized PCrL showed improved stability over a wide temperature range, retaining all of its initial activity after a one-hour incubation at 60 °C. The immobilization of PCrL significantly improves its catalytic performance in organic solvents, its pH tolerance value, and its thermal stability. Interestingly, 95% and almost 50% of PCrL's initial activity was retained after 6 and 12 cycles, respectively. The characteristics of all PCrL forms were analyzed by X-ray diffraction and scanning electron microscopy combined with energy dispersive spectroscopy. The maximum conversion efficiency of oleic acid and methanol to methyl esters (biodiesel), by PCrL immobilized on CaCO3, was 65% after a 12 h incubation at 40 °C, while free PCrL generated only 30% conversion, under the same conditions.
Collapse
Affiliation(s)
- Ismail Hasnaoui
- Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Univ Lyon, Université Lyon 1, Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France; (I.H.); (A.D.); (A.N.)
- Laboratoire de Bioressources, Biotechnologie, Ethnopharmacologie et Santé (LBBES), Faculté des Sciences d’Oujda (FSO), Université Mohammed Premier (UMP), Bd Mohamed VI BP 717, Oujda 60000, Morocco; (N.E.B.); (R.B.); (E.S.); (A.A.)
| | - Sondes Mechri
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et de Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax (USF), Route de Sidi Mansour Km 6, BP 1177, Sfax 3018, Tunisia; (S.M.); (B.J.)
| | - Ahlem Dab
- Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Univ Lyon, Université Lyon 1, Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France; (I.H.); (A.D.); (A.N.)
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et de Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax (USF), Route de Sidi Mansour Km 6, BP 1177, Sfax 3018, Tunisia; (S.M.); (B.J.)
| | - Nour Eddine Bentouhami
- Laboratoire de Bioressources, Biotechnologie, Ethnopharmacologie et Santé (LBBES), Faculté des Sciences d’Oujda (FSO), Université Mohammed Premier (UMP), Bd Mohamed VI BP 717, Oujda 60000, Morocco; (N.E.B.); (R.B.); (E.S.); (A.A.)
| | - Houssam Abouloifa
- Research Unit of Microbiology, Biomolecules and Biotechnology, Laboratory of Chemistry Physics and Biotechnology of Molecules and Materials (LCPBMM), Faculty of Sciences and Techniques Mohammedia (FSTM), Hassan II University of Casablanca, BP 146, Mohammedia 28806, Morocco;
| | - Reda Bellaouchi
- Laboratoire de Bioressources, Biotechnologie, Ethnopharmacologie et Santé (LBBES), Faculté des Sciences d’Oujda (FSO), Université Mohammed Premier (UMP), Bd Mohamed VI BP 717, Oujda 60000, Morocco; (N.E.B.); (R.B.); (E.S.); (A.A.)
| | - Fawzi Allala
- Laboratoire de Biologie Cellulaire et Moléculaire (LCMB), Equipe de Microbiologie, Faculté des Sciences Biologiques (FSB), Université des Sciences et de la Technologie Houari Boumediene (USTHB), El Alia, Bab Ezzouar, Alger 16111, Algeria;
| | - Ennouamane Saalaoui
- Laboratoire de Bioressources, Biotechnologie, Ethnopharmacologie et Santé (LBBES), Faculté des Sciences d’Oujda (FSO), Université Mohammed Premier (UMP), Bd Mohamed VI BP 717, Oujda 60000, Morocco; (N.E.B.); (R.B.); (E.S.); (A.A.)
| | - Bassem Jaouadi
- Laboratoire des Biotechnologies Microbiennes et Enzymatiques et de Biomolécules (LBMEB), Centre de Biotechnologie de Sfax (CBS), Université de Sfax (USF), Route de Sidi Mansour Km 6, BP 1177, Sfax 3018, Tunisia; (S.M.); (B.J.)
| | - Alexandre Noiriel
- Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Univ Lyon, Université Lyon 1, Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France; (I.H.); (A.D.); (A.N.)
| | - Abdeslam Asehraou
- Laboratoire de Bioressources, Biotechnologie, Ethnopharmacologie et Santé (LBBES), Faculté des Sciences d’Oujda (FSO), Université Mohammed Premier (UMP), Bd Mohamed VI BP 717, Oujda 60000, Morocco; (N.E.B.); (R.B.); (E.S.); (A.A.)
| | - Abdelkarim Abousalham
- Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS), Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, Univ Lyon, Université Lyon 1, Bât Raulin, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne cedex, France; (I.H.); (A.D.); (A.N.)
| |
Collapse
|
2
|
Wu W, Lu S, Jiang S, Chen J, Zheng Z, Jiang S, Yang P. Immobilization of recombinant Trametes versicolor aflatoxin B 1-degrading enzyme (TV-AFB 1D) with montmorillonite for absorption and in situ degradation of aflatoxin B 1. Mycotoxin Res 2024; 40:175-186. [PMID: 38224413 DOI: 10.1007/s12550-024-00520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Aflatoxin B1 is a highly carcinogenic and teratogenic substance mainly produced by toxin-producing strains such as Aspergillus flavus and Aspergillus parasitic. The efficient decomposition of aflatoxin is an important means to reduce its harm to humans and livestock. In this study, Trametes versicolor aflatoxin B1-degrading enzyme (TV-AFB1D) was recombinantly expressed in Bacillus subtilis (B. subtilis) 168. MMT-CTAB-AFB1D complex was prepared by the immobilization of TV-AFB1D and montmorillonite (MMT) by cross-linking glutaraldehyde. The results indicated that TV-AFB1D could recombinantly express in engineered B. subtilis 168 with a size of approximately 77 kDa. The immobilization efficiency of MMT-CTAB-AFB1D reached 98.63% when the concentration of glutaraldehyde was 5% (v/v). The relative activity of TV-AFB1D decreased to 72.36% after reusing for 10 times. The content of AFB1 in MMT-CTAB-AFB1D-AFB1 decreased to 1.1 µg/g from the initial 5.6 µg/g after incubation at 50 °C for 6 h. The amount of 80.4% AFB1 in the MMT-CTAB-AFB1D-AFB1 complex was degraded by in situ catalytic degradation. Thus, the strategy of combining adsorption and in situ degradation could effectively reduce the content of AFB1 residue in the MMT-CTAB-AFB1D complex.
Collapse
Affiliation(s)
- Wenjing Wu
- College of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei City, 230601, Anhui Province, China
| | - Shuhua Lu
- College of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei City, 230601, Anhui Province, China
| | - Suwei Jiang
- Department of Biological, Food and Environment Engineering, Hefei University, 158 Jinxiu Avenue, Hefei, 230601, China
| | - Jianchao Chen
- College of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei City, 230601, Anhui Province, China
| | - Zhi Zheng
- College of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei City, 230601, Anhui Province, China
| | - Shaotong Jiang
- College of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei City, 230601, Anhui Province, China
| | - Peizhou Yang
- College of Food and Biological Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural Products, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei City, 230601, Anhui Province, China.
| |
Collapse
|
3
|
Utilization of Clay Materials as Support for Aspergillus japonicus Lipase: An Eco-Friendly Approach. Catalysts 2021. [DOI: 10.3390/catal11101173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lipase is an important group of biocatalysts, which combines versatility and specificity, and can catalyze several reactions when applied in a high amount of industrial processes. In this study, the lipase produced by Aspergillus japonicus under submerged cultivation, was immobilized by physical adsorption, using clay supports, namely, diatomite, vermiculite, montmorillonite KSF (MKSF) and kaolinite. Besides, the immobilized and free enzyme was characterized, regarding pH, temperature and kinetic parameters. The most promising clay support was MKSF that presented 69.47% immobilization yield and hydrolytic activity higher than the other conditions studied (270.7 U g−1). The derivative produced with MKSF showed high stability at pH and temperature, keeping 100% of its activity throughout 12 h of incubation in the pH ranges between 4.0 and 9.0 and at a temperature from 30 to 50 °C. In addition, the immobilized lipase on MKSF support showed an improvement in the catalytic performance. The study shows the potential of using clays as support to immobilized lipolytic enzymes by adsorption method, which is a simple and cost-effective process.
Collapse
|
4
|
Immobilization of Mutant Phosphotriesterase on Fuller’s Earth Enhanced the Stability of the Enzyme. Catalysts 2021. [DOI: 10.3390/catal11080983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immobilization is a method for making an enzyme more robust in the environment, especially in terms of its stability and reusability. A mutant phosphotriesterase (YT PTE) isolated from Pseudomonas dimunita has been reported to have high proficiency in hydrolyzing the Sp and Rp-enantiomers of organophosphate chromophoric analogs and therefore has great potential as a decontamination agent and biosensor. This work aims to investigate the feasibility of using Fuller’s earth (FE) as a YT PTE immobilization support and characterize its biochemical features after immobilization. The immobilized YT PTE was found to show improvement in thermal stability with a half-life of 24 h compared to that of the free enzyme, which was only 8 h. The stability of the immobilized YT PTE allowed storage for up to 4 months and reuse for up to 6 times. The immobilized YT PTE showed high tolerance against all tested metal ions, Tween 40 and 80 surfactants and inorganic solvents. These findings showed that the immobilized YT PTE became more robust for use especially with regards to its stability and reusability. These features would enhance the future applicability of this enzyme as a decontamination agent and its use in other suitable industrial applications.
Collapse
|