1
|
Fu H, Zhou H, Qiu Y, Wang J, Ma Z, Li H, Zhang F, Qiu C, Shen J, Liu T. SEPT6_ TRIM33 Gene Fusion and Mutated TP53 Pathway Associate With Unfavorable Prognosis in Patients With B-Cell Lymphomas. Front Oncol 2021; 11:765544. [PMID: 34926267 PMCID: PMC8671703 DOI: 10.3389/fonc.2021.765544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background Mounting studies have sought to identify novel mutation biomarkers having diagnostic and prognostic potentials. Nevertheless, the understanding of the mutated pathways related to development and prognosis of B-cell lymphoma is still lacking. We aimed to comprehensively analyze the mutation alterations in genes of canonical signaling pathways and their impacts on the clinic outcomes of patients with B-cell lymphoma. Methods Circulating cell-free DNA (cfDNA) samples from 79 patients with B-cell lymphomas were used for targeted sequencing with a 560-gene panel for depicting mutation landscapes and identifying gene fusion events. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses of mutated genes were performed. The associations of mutation status of genes and seven canonical oncogenic pathways with progression-free survival (PFS) were assessed using Kaplan-Meier test and multivariate Cox analysis. The variant allele frequencies (VAFs) of genes in TP53 and Hippo pathways in paired baseline and post-treatment samples from 18 B-cell lymphoma patients were compared. Finally, the associations of identified fusion genes, mutated genes, and pathways with treatment response were evaluated based on objective response rates (ORRs) comparisons of groups. Results We identified 666 mutations from 262 genes in baseline cfDNAs from 79 B-cell lymphoma patients, and found some genes were preferentially mutated in our cohort such as GNAQ, GNAS, H3F3A, DNMT3A, HLA-A, and HLA-B. These frequently mutated genes were significantly associated with negative "regulation of gene expression, epigenetic" and virus infections such as cytomegalovirus, Epstein-Barr virus, human immunodeficiency virus 1 infections. We detected five fusion genes in at least two patients with B-cell lymphoma, and among them, TCF7L2_WT1 gene fusion was most frequently detected in 30.4% of patients (24 of 79 cases). SEPT6_TRIM33 gene fusion, mutated TP53 and Hippo pathways were significantly associated with poor PFS, and SEPT6_TRIM33 fusion gene and mutated TP53 pathway were independent prognostic factors for B-cell lymphoma. A decreased VAF of TP53 p.Y88C and LATS2 p.F972L was detected in patients with complete response to treatments. Moreover, a significant difference in ORR was observed in patients with NPM1_NR4A3 and SEPT6_TRIM33 fusions. Conclusions SEPT6_TRIM33 gene fusion and mutated TP53 and Hippo pathways may serve as prognostic makers for B-cell lymphoma patients.
Collapse
Affiliation(s)
- Haiying Fu
- Department of Hematology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Huarong Zhou
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Yanyan Qiu
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Jianfei Wang
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Zhiming Ma
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Hongping Li
- Research and Development Division, Oriomics Biotech Inc, Hangzhou, China
| | - Feng Zhang
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Chenxi Qiu
- Department of Hematology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, China
| | - Jianzhen Shen
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| | - Tingbo Liu
- Department of Hematology, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fuzhou, China
| |
Collapse
|
2
|
Matsukawa T, Aplan PD. Clinical and molecular consequences of fusion genes in myeloid malignancies. Stem Cells 2020; 38:1366-1374. [PMID: 32745287 DOI: 10.1002/stem.3263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 11/07/2022]
Abstract
Leukemias are heterogeneous diseases characterized by aberrant hematopoietic stem and progenitor cells (HSPCs). Oncogenic fusion genes and proteins, produced via gross chromosomal rearrangements, such as chromosomal translocation, insertion, and inversion, play important roles in hematologic malignancies. These oncoproteins alter fundamental cellular properties, such as self-renewal, differentiation, and proliferation, and confer leukemogenic potential to HSPCs. In addition to providing fundamental insights into the process of leukemic transformation, these fusion genes provide targets for treatment and monitoring of myeloid leukemias. Furthermore, new technologies such as next-generation sequencing have allowed additional insights into the nature of leukemic fusion genes. In this review, we discuss the history, biologic effect, and clinical impact of fusion genes in the field of myeloid leukemias.
Collapse
Affiliation(s)
- Toshihiro Matsukawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Qiu Z, Holder KN, Lin AP, Myers J, Jiang S, Gorena KM, Kinney MC, Aguiar RCT. Generation and characterization of the Eµ-Irf8 mouse model. Cancer Genet 2020; 245:6-16. [PMID: 32535543 DOI: 10.1016/j.cancergen.2020.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
In mature B-cell malignancies, chromosomal translocations often juxtapose an oncogenic locus to the regulatory regions of the immunoglobulin genes. These genomic rearrangements can associate with specific clinical/pathological sub-entities and inform diagnosis and treatment decisions. Recently, we characterized the t(14;16)(q32;q24) in diffuse large B-cell lymphoma (DLBCL), and showed that it targets the transcription factor IRF8, which is also somatically mutated in ~10% of DLBCLs. IRF8 regulates innate and adaptive immune responses mediated by myeloid/monocytic and lymphoid cells. While the role of IRF8 in human myeloid/dendritic-cell disorders is well established, less is known of its contribution to the pathogenesis of mature B-cell malignancies. To address this knowledge gap, we generated the Eµ-Irf8 mouse model, which mimics the IRF8 deregulation associated with t(14;16) of DLBCL. Eµ-Irf8 mice develop normally and display peripheral blood cell parameters within normal range. However, Eµ-Irf8 mice accumulate pre-pro-B-cells and transitional B-cells in the bone marrow and spleen, respectively, suggesting that the physiological role of Irf8 in B-cell development is amplified. Notably, in Eµ-Irf8 mice, the lymphomagenic Irf8 targets Aicda and Bcl6 are overexpressed in mature B-cells. Yet, the incidence of B-cell lymphomas is not increased in the Eµ-Irf8 model, even though their estimated survival probability is significantly lower than that of WT controls. Together, these observations suggest that the penetrance on the Irf8-driven phenotype may be incomplete and that introduction of second genetic hit, a common strategy in mouse models of lymphoma, may be necessary to uncover the pro-lymphoma phenotype of the Eµ-Irf8 mice.
Collapse
Affiliation(s)
- Zhijun Qiu
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Kenneth N Holder
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - An-Ping Lin
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Jamie Myers
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Shoulei Jiang
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Karla M Gorena
- Office of the Vice President for Research, Flow Cytometry Facility, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Marsha C Kinney
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Ricardo C T Aguiar
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, Audie Murphy VA Hospital, San Antonio, TX 78229, USA.
| |
Collapse
|
4
|
Cerrato A, Merolla F, Morra F, Celetti A. CCDC6: the identity of a protein known to be partner in fusion. Int J Cancer 2017; 142:1300-1308. [PMID: 29044514 DOI: 10.1002/ijc.31106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/07/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Coiled Coil Domain Containing 6 gene, CCDC6, was initially isolated as part of a tumorigenic DNA originated by the fusion of CCDC6 with the tyrosine kinase of RET receptor, following a paracentric inversion of chromosome 10. For a long time, CCDC6 has been considered as an accidental partner of the RET protooncogene, providing the promoter and the first 101 aa necessary for the constitutive activation of the oncogenic Tyrosine Kinase (TK) RET in thyroid cells. With the advent of more refined diagnostic tools and bioinformatic algorithms, an exponential growth in fusion genes discoveries has allowed the identification of CCDC6 as partner of genes other than RET in different tumor types. CCDC6 gene product has a proper role in sustaining the DNA damage checkpoints in response to DNA damage. The inactivation of CCDC6 secondary to chromosomal rearrangements or gene mutations could enhance tumor progression by impairing the apoptotic response upon the DNA damage exposure, contributing to the generation of radio- and chemoresistance. Preclinical studies indicate that the attenuation of CCDC6 in cancer, while conferring a resistance to cisplatinum, sensitizes the cancer cells to the small molecule inhibitors of Poly (ADP-ribose) polymerase (PARP1/2) with a synthetic lethal effect. Several CCDC6 mutations and gene rearrangements have been described so far in different types of cancer and CCDC6 may represent a possible predictive biomarker of tumor resistance to the conventional anticancer treatments. Nevertheless, the detection of a CCDC6 impairment in cancer patients may help to select, in future clinical trials, those patients who could benefit of PARP-inhibitors treatment alone or in combination with other treatments.
Collapse
Affiliation(s)
- Aniello Cerrato
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Francesco Morra
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
| | - Angela Celetti
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
| |
Collapse
|
5
|
Menu E, Beaufils N, Usseglio F, Balducci E, Lafage Pochitaloff M, Costello R, Gabert J. First case of B ALL with KMT2A-MAML2 rearrangement: a case report. BMC Cancer 2017; 17:363. [PMID: 28535805 PMCID: PMC5442694 DOI: 10.1186/s12885-017-3368-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/17/2017] [Indexed: 12/12/2022] Open
Abstract
Background A large number of chromosomal translocations of the human KMT2A gene, better known as the MLL gene, have so far been characterized. Genetic rearrangements involving KMT2A gene are frequently involved in lymphoid, myeloid and mixed lineage leukemia. One of its rare fusion partners, the mastermind like 2 (MAML2) gene has been reported in four cases of myeloid neoplasms after chemotherapy so far: two acute myeloid leukemias (AML) and two myelodysplasic syndrome (MDS), and two cases of secondary T-cell acute lymphoblastic leukemia (T-ALL). Case presentation Here we report the case of a KMT2A - MAML2 fusion discovered by Next-Generation Sequencing (NGS) analysis in front of an inv11 (q21q23) present in a 47-year-old female previously treated for a sarcoma in 2014, who had a B acute lymphoid leukemia (B ALL). Conclusion It is, to our knowledge, the first case of B acute lymphoblastic leukemia with this fusion gene. At the molecular level, two rearrangements were detected using RNA sequencing juxtaposing exon 7 to exon 2 and exon 9 to intron 1–2 of the KMT2A and MAML2 genes respectively, and one rearrangement using Sanger sequencing juxtaposing exon 8 and exon 2.
Collapse
Affiliation(s)
- Estelle Menu
- Department of Biochemistry & Molecular Biology, University Hospital Nord, Marseille, France.
| | - Nathalie Beaufils
- Department of Biochemistry & Molecular Biology, University Hospital Nord, Marseille, France
| | - Fabrice Usseglio
- Department of Biochemistry & Molecular Biology, University Hospital Nord, Marseille, France.,U1072 INSERM, Université de la Méditerranée, Marseille, France
| | | | | | - Regis Costello
- Department of clinical onco-hematology, University Hospital of La Conception, Marseille, France
| | - Jean Gabert
- Department of Biochemistry & Molecular Biology, University Hospital Nord, Marseille, France.,U1072 INSERM, Université de la Méditerranée, Marseille, France
| |
Collapse
|