1
|
SHAHIDIAN AZADEH, HASSANKIADEH ARASHGHORBANNIA. STRESS ANALYSIS OF INTERNAL CAROTID ARTERY WITH LOW STENOSIS LEVEL: THE EFFECT OF MATERIAL MODEL AND PLAQUE GEOMETRY. J MECH MED BIOL 2017. [DOI: 10.1142/s0219519417500981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stress concentration in carotid stenosis has been proven to assist plaque morphology in disease diagnosis and vulnerability. This work focuses on numerical analysis of stress and strain distribution in the cross-section of internal carotid artery using a 2D structure-only method. The influence of four different idealized plaque geometries (circle, ellipse, oval and wedge) is investigated. Numerical simulations are implemented utilizing linear elastic model along with four hyperelastic constitutive laws named neo-Hookean, Ogden, Yeoh and Mooney–Rivlin. Each case is compared to the real geometry. Results show significant strength of oval and wedged geometries in predicting stress and strain values. Our results emphasize that Yeoh and Ogden hyperelastic materials are more reliable in stress prediction with errors less than 3%. The same concept is observed in locating critical stresses where oval and wedged plaque geometries are the most accurate models. Similar results are observed in predicting maximum principal elastic strain with errors less than 1%. However, the strain distribution in idealized plaque models showed a considerable difference in comparison with real geometry.
Collapse
Affiliation(s)
- AZADEH SHAHIDIAN
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
2
|
Li W, Bird NC, Luo X. A Pointwise Method for Identifying Biomechanical Heterogeneity of the Human Gallbladder. Front Physiol 2017; 8:176. [PMID: 28408886 PMCID: PMC5374253 DOI: 10.3389/fphys.2017.00176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/07/2017] [Indexed: 11/13/2022] Open
Abstract
Identifying the heterogeneous biomechanical property of human gallbladder (GB) walls from non-invasive measurements can have clinical significance in patient-specific modeling and acalculous biliary pain diagnosis. In this article, a pointwise method was proposed to measure the heterogeneity of ten samples of human GB during refilling. Three different points, two on the equator of GB body 90° apart and one on the apex of GB fundus, were chosen to represent the typical regions of interest. The stretches at these points were estimated from ultrasound images of the GB during the bile emptying phase based on an analytical model. The model was validated against the experimental data of a lamb GB. The material parameters at the different points were determined inversely by making use of a structure-based anisotropic constitutive model. This anisotropic model yielded much better accuracy when compared to a number of phenomenologically-based constitutive laws, as demonstrated by its significantly reduced least-square errors in stress curve fitting. The results confirmed that the human GB wall material was heterogeneous, particularly toward the apex region. Our study also suggested that non-uniform wall thickness of the GB was important in determining the material parameters, in particular, on the parameters associated with the properties of the matrix and the longitudinal fibers—the difference could be as large as 20–30% compared to that of the uniform thickness model.
Collapse
Affiliation(s)
- Wenguang Li
- School of Engineering, University of GlasgowGlasgow, UK
| | - Nigel C Bird
- Academic Surgical Unit, Royal Hallamshire HospitalSheffield, UK
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of GlasgowGlasgow, UK
| |
Collapse
|
3
|
Akyildiz AC, Hansen HHG, Nieuwstadt HA, Speelman L, De Korte CL, van der Steen AFW, Gijsen FJH. A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis. Ann Biomed Eng 2015; 44:968-79. [PMID: 26399991 PMCID: PMC4826666 DOI: 10.1007/s10439-015-1410-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 07/24/2015] [Indexed: 02/07/2023]
Abstract
Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined, to estimate material properties of plaque components. Iliac arteries with plaques were excised from 6 atherosclerotic pigs and subjected to an inflation test with pressures ranging from 10 to 120 mmHg. The arteries were imaged with high frequency 40 MHz ultrasound. Deformation maps of the plaques were reconstructed by cross correlation of the ultrasound radiofrequency data. Subsequently, the arteries were perfusion fixed for histology and structural components were identified. The histological data were registered to the ultrasound data to construct FE model of the plaques. Material properties of the arterial wall and the intima of the atherosclerotic plaques were estimated using a grid search method. The computed displacement fields showed good agreement with the measured displacement fields, implying that the FE models were able to capture local inhomogeneities within the plaque. On average, nonlinear stiffening of both the wall and the intima was observed, and the wall of the atheroslcerotic porcine iliac arteries was markedly stiffer than the intima (877 ± 459 vs. 100 ± 68 kPa at 100 mmHg). The large spread in the data further illustrates the wide variation of the material properties. We demonstrated the feasibility of a mixed experimental–numerical framework to determine the material properties of arterial wall and intima of atherosclerotic plaques from intact arteries, and concluded that, due to the observed variation, plaque specific properties are required for accurate stress simulations.
Collapse
Affiliation(s)
- Ali C. Akyildiz
- />Biomechanics Lab, Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- />Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, USA
| | - Hendrik H. G. Hansen
- />Medical UltraSound Imaging Center (MUSIC), Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Harm A. Nieuwstadt
- />Biomechanics Lab, Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Lambert Speelman
- />Biomechanics Lab, Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Chris L. De Korte
- />Medical UltraSound Imaging Center (MUSIC), Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antonius F. W. van der Steen
- />Biomechanics Lab, Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- />Department of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Frank J. H. Gijsen
- />Biomechanics Lab, Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
4
|
Akyildiz AC, Speelman L, Nieuwstadt HA, van Brummelen H, Virmani R, van der Lugt A, van der Steen AFW, Wentzel JJ, Gijsen FJH. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Comput Methods Biomech Biomed Engin 2015; 19:771-9. [PMID: 26237279 DOI: 10.1080/10255842.2015.1062091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heart attacks are often caused by rupture of caps of atherosclerotic plaques in coronary arteries. Cap rupture occurs when cap stress exceeds cap strength. We investigated the effects of plaque morphology and material properties on cap stress. Histological data from 77 coronary lesions were obtained and segmented. In these patient-specific cross sections, peak cap stresses were computed by using finite element analyses. The finite element analyses were 2D, assumed isotropic material behavior, and ignored residual stresses. To represent the wide spread in material properties, we applied soft and stiff material models for the intima. Measures of geometric plaque features for all lesions were determined and their relations to peak cap stress were examined using regression analyses. Patient-specific geometrical plaque features greatly influence peak cap stresses. Especially, local irregularities in lumen and necrotic core shape as well as a thin intima layer near the shoulder of the plaque induce local stress maxima. For stiff models, cap stress increased with decreasing cap thickness and increasing lumen radius (R = 0.79). For soft models, this relationship changed: increasing lumen radius and increasing lumen curvature were associated with increased cap stress (R = 0.66). The results of this study imply that not only accurate assessment of plaque geometry, but also of intima properties is essential for cap stress analyses in atherosclerotic plaques in human coronary arteries.
Collapse
Affiliation(s)
- Ali C Akyildiz
- a Department of Biomedical Engineering , Thoraxcenter, Erasmus Medical Center , Rotterdam , The Netherlands
| | - Lambert Speelman
- a Department of Biomedical Engineering , Thoraxcenter, Erasmus Medical Center , Rotterdam , The Netherlands.,b Interuniversity Cardiology Institute of the Netherlands (ICIN) , Utrecht , The Netherlands
| | - Harm A Nieuwstadt
- a Department of Biomedical Engineering , Thoraxcenter, Erasmus Medical Center , Rotterdam , The Netherlands
| | - Harald van Brummelen
- c Department of Mechanical Engineering , Eindhoven University of Technology , Eindhoven , The Netherlands.,d Department of Mathematics and Computer Science , Eindhoven University of Technology , Eindhoven , The Netherlands
| | - Renu Virmani
- e CVPath Institute, Inc. , Gaithersburg , MD , USA
| | - Aad van der Lugt
- f Department of Radiology , Erasmus Medical Center , Rotterdam , The Netherlands
| | - Anton F W van der Steen
- a Department of Biomedical Engineering , Thoraxcenter, Erasmus Medical Center , Rotterdam , The Netherlands.,g Department of Applied Sciences , Delft University of Technology, Delft , , The Netherlands
| | - Jolanda J Wentzel
- a Department of Biomedical Engineering , Thoraxcenter, Erasmus Medical Center , Rotterdam , The Netherlands
| | - Frank J H Gijsen
- a Department of Biomedical Engineering , Thoraxcenter, Erasmus Medical Center , Rotterdam , The Netherlands
| |
Collapse
|
5
|
Trabelsi O, Duprey A, Favre JP, Avril S. Predictive Models with Patient Specific Material Properties for the Biomechanical Behavior of Ascending Thoracic Aneurysms. Ann Biomed Eng 2015; 44:84-98. [DOI: 10.1007/s10439-015-1374-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/24/2015] [Indexed: 02/07/2023]
|
6
|
Franquet A, Avril S, Le Riche R, Badel P, Schneider F, Boissier C, Favre JP. Identification of the in vivo elastic properties of common carotid arteries from MRI: A study on subjects with and without atherosclerosis. J Mech Behav Biomed Mater 2013; 27:184-203. [DOI: 10.1016/j.jmbbm.2013.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 03/11/2013] [Accepted: 03/22/2013] [Indexed: 11/28/2022]
|
7
|
Franquet A, Avril S, Le Riche R, Badel P, Schneider FC, Li ZY, Boissier C, Favre JP. A new method for the in vivo identification of mechanical properties in arteries from cine MRI images: theoretical framework and validation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:1448-1461. [PMID: 23591477 DOI: 10.1109/tmi.2013.2257828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Quantifying the stiffness properties of soft tissues is essential for the diagnosis of many cardiovascular diseases such as atherosclerosis. In these pathologies it is widely agreed that the arterial wall stiffness is an indicator of vulnerability. The present paper focuses on the carotid artery and proposes a new inversion methodology for deriving the stiffness properties of the wall from cine-MRI (magnetic resonance imaging) data. We address this problem by setting-up a cost function defined as the distance between the modeled pixel signals and the measured ones. Minimizing this cost function yields the unknown stiffness properties of both the arterial wall and the surrounding tissues. The sensitivity of the identified properties to various sources of uncertainty is studied. Validation of the method is performed on a rubber phantom. The elastic modulus identified using the developed methodology lies within a mean error of 9.6%. It is then applied to two young healthy subjects as a proof of practical feasibility, with identified values of 625 kPa and 587 kPa for one of the carotid of each subject.
Collapse
Affiliation(s)
- Alexandre Franquet
- CIS-EMSE, CNRS UMR 5146, Ecole Nationale Supérieure des Mines, F-42023 Saint-Etienne, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Le Floc’h S, Cloutier G, Saijo Y, Finet G, Yazdani SK, Deleaval F, Rioufol G, Pettigrew RI, Ohayon J. A four-criterion selection procedure for atherosclerotic plaque elasticity reconstruction based on in vivo coronary intravascular ultrasound radial strain sequences. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38. [PMID: 23196202 PMCID: PMC4722089 DOI: 10.1016/j.ultrasmedbio.2012.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plaque elasticity (i.e., modulogram) and morphology are good predictors of plaque vulnerability. Recently, our group developed an intravascular ultrasound (IVUS) elasticity reconstruction method which was successfully implemented in vitro using vessel phantoms. In vivo IVUS modulography, however, remains a major challenge as the motion of the heart prevents accurate strain field estimation. We therefore designed a technique to extract accurate strain fields and modulograms from recorded IVUS sequences. We identified a set of four criteria based on tissue overlapping, RF-correlation coefficient between two successive frames, performance of the elasticity reconstruction method to recover the measured radial strain, and reproducibility of the computed modulograms over the cardiac cycle. This four-criterion selection procedure (4-CSP) was successfully tested on IVUS sequences obtained in twelve patients referred for a directional coronary atherectomy intervention. This study demonstrates the potential of the IVUS modulography technique based on the proposed 4-CSP to detect vulnerable plaques in vivo.
Collapse
Affiliation(s)
- Simon Le Floc’h
- Laboratory TIMC-IMAG/DyCTiM, UJF, CNRS UMR 5525, Grenoble, France
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, and Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada
| | - Yoshifumi Saijo
- Department of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Gérard Finet
- Department of Hemodynamics and Interventional Cardiology, Hospices Civiles de Lyon and Claude Bernard University Lyon 1, INSERM Unit 886, Lyon, France
| | | | - Flavien Deleaval
- Laboratory TIMC-IMAG/DyCTiM, UJF, CNRS UMR 5525, Grenoble, France
| | - Gilles Rioufol
- Department of Hemodynamics and Interventional Cardiology, Hospices Civiles de Lyon and Claude Bernard University Lyon 1, INSERM Unit 886, Lyon, France
| | - Roderic I. Pettigrew
- Laboratory of Integrative Cardiovascular Imaging Science, NIDDK, NIH, Bethesda, Maryland, USA
| | - Jacques Ohayon
- Laboratory TIMC-IMAG/DyCTiM, UJF, CNRS UMR 5525, Grenoble, France
- University of Savoie, Polytech Annecy-Chambéry, Le Bourget du Lac, France
- Address for correspondence, Professor Jacques Ohayon, Laboratory TIMC-DynaCell, UJF, CNRS UMR 5525, InS, Grenoble, France., Fax number: (33) 456 52 00 22, Telephone number: (33) 456 52 0124,
| |
Collapse
|
9
|
On the mechanical behaviour of carotid artery plaques: the influence of curve-fitting experimental data on numerical model results. Biomech Model Mechanobiol 2012. [DOI: 10.1007/s10237-012-0457-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|