1
|
Chen P, Yu J, Guo H, Yuwen P, Zhu Y, Zhang Y. Clinical outcome after open-wedge high tibial osteotomy: comparison of double-triangle locking compression plate (DT-LCP) and T-shaped locking compression plate (T-LCP). BMC Musculoskelet Disord 2024; 25:609. [PMID: 39085837 PMCID: PMC11292875 DOI: 10.1186/s12891-024-07658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The objective of this study was to compare the clinical outcomes of two internal fixation methods for high tibial osteotomy (HTO): double-triangle locking compression plate (DT-LCP) and T-shaped locking compression plate (T-LCP). METHODS 202 adult patients in our hospital between January 2018 and December 2021 were included and followed up for at least one year: group 1(DT-LCP, 98 patients) and group 2 (T-LCP, 104 patients). Detailed information on demographics, preoperative and postoperative follow-up, surgical procedures, and complications were collected. The information of the International Knee Documentation Committee Knee Evaluation Form (IKDC), Knee Injury and Osteoarthritis Outcome Score (KOOS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were collected before surgery and at the last follow-up. RESULTS A total of 202 patients were included in the per-protocol analysis. No significant difference was found in terms of demographic data between groups, except for age and BMI. Clinically relevant improvements in knee pain were reached up to last follow-up after the operation in both groups. The mean pain scores (KOOS, WOMAC) at the final follow-up were significantly higher among group 1 compared to group 2 (P = 0.040 and P = 0.023). Furthermore, the DT-LCP internal fixation exerted more excellent effects on other symptoms, function and quality of life than T-LCP internal fixation. CONCLUSIONS Our study demonstrated that DT-LCP provided better clinical performance due to its implant irritant pain, compared with T-LCP. Thus, DT-LCP is a feasible alternative for the fixation of OW-HTO.
Collapse
Affiliation(s)
- Pengzhao Chen
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, NO.139 Ziqiang Road, Shijiazhuang 050051, Hebei, People's Republic of China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang 050051, Hebei, People's Republic of China
| | - Jiahao Yu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, NO.139 Ziqiang Road, Shijiazhuang 050051, Hebei, People's Republic of China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang 050051, Hebei, People's Republic of China
| | - Haichuan Guo
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, NO.139 Ziqiang Road, Shijiazhuang 050051, Hebei, People's Republic of China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang 050051, Hebei, People's Republic of China
| | - Peizhi Yuwen
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, NO.139 Ziqiang Road, Shijiazhuang 050051, Hebei, People's Republic of China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang 050051, Hebei, People's Republic of China
| | - Yanbin Zhu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, NO.139 Ziqiang Road, Shijiazhuang 050051, Hebei, People's Republic of China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang 050051, Hebei, People's Republic of China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang 050051, Hebei, People's Republic of China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, NO.139 Ziqiang Road, Shijiazhuang 050051, Hebei, People's Republic of China.
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang 050051, Hebei, People's Republic of China.
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang 050051, Hebei, People's Republic of China.
- Chinese Academy of Engineering, Beijing 100088, People's Republic of China.
| |
Collapse
|
2
|
Tan J, Yang Y, Wang M, Huang X, Ouyang H, Zhao D, Huang G, Deng Y, Huang W. In silico biomechanical analysis of poller screw-assisted small-diameter intramedullary nail in the treatment of distal tibial fractures. Front Bioeng Biotechnol 2023; 11:1172013. [PMID: 37229497 PMCID: PMC10203470 DOI: 10.3389/fbioe.2023.1172013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Objective: To evaluate the biomechanical effects of Poller screws (PS) combined with small-diameter intramedullary nails in the treatment of distal tibial fractures at different locations and on different planes. Methods: Nine finite element (FE) models were used to simulate the placement of the intramedullary nail (IMN) and the PS for distal tibial fractures. Structural stiffness and interfragmentary motion (IFM) through the fracture were investigated to assess the biomechanical effects of the PS. The allowable stress method was used to evaluate the safety of the construct. Results: With the axial load of 500 N, the mean axial stiffness of IMN group was 973.38 ± 95.65 N/mm, which was smaller than that at positions A and B of the coronal group and sagittal group (p < 0.05). The shear IFM of the IMN group was 2.10 ± 0.02 mm, which were smaller than that at positions A and B of the coronal group and sagittal group (p < 0.05). Under physiological load, the stresses of all internal fixation devices and the nail-bone interface were within a safe range. Conclusion: In the treatment of distal tibial fractures, placing the PS in the proximal fracture block can obtain better biomechanical performance. The IMN fixation system can obtain higher structural stiffness and reduce the IFM of the fracture end by adding PS.
Collapse
Affiliation(s)
- Jinchuan Tan
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for the Translation of Medical 3D Printing Applications, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yang Yang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for the Translation of Medical 3D Printing Applications, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mian Wang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for the Translation of Medical 3D Printing Applications, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xuecheng Huang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for the Translation of Medical 3D Printing Applications, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hanbin Ouyang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for the Translation of Medical 3D Printing Applications, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Dongliang Zhao
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Gang Huang
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuping Deng
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for the Translation of Medical 3D Printing Applications, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for the Translation of Medical 3D Printing Applications, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
3
|
Deng Y, Zhao D, Yang Y, Ouyang H, Xu C, Xiong L, Li Y, Tan W, Huang G, Huang W. Optimal design and biomechanical analysis of sandwich composite metal locking screws for far cortical locking constructs. Front Bioeng Biotechnol 2022; 10:967430. [PMID: 36237212 PMCID: PMC9551571 DOI: 10.3389/fbioe.2022.967430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the interests of more flexible and less stiff bridge constructs to stimulate bone healing, the technique of far cortical locking has been designed to improve locked plating constructs in terms of stress concentration, stress shielding, and inhibition of issues around fracture healing. However, far cortical locking screws currently lack objective designs and anti-fatigue designs. This study investigates an optimization algorithm to form a special locking screw composed of various metals, which can theoretically achieve the maintenance of the excellent mechanical properties of far cortical locking constructs in terms of fracture internal fixation, while maintaining the biomechanical safety and fatigue resistance of the structure. The numerical results of our study indicate that the maximum von Mises stress of the optimized construct is less than the allowable stress of the material under each working condition while still achieving sufficient parallel interfragmentary motion. Numerical analysis of high cycle fatigue indicates that the optimized construct increases the safety factor to five. A high cycle fatigue test and defect analysis indicates that the sandwich locking constructs have better fatigue resistance. We conclude that the sandwich locking construct theoretically maintains its biomechanical safety and fatigue resistance while also maintaining excellent mechanical properties for fracture internal fixation.
Collapse
Affiliation(s)
- Yuping Deng
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Key Discipline of Human Anatomy, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dongliang Zhao
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Key Discipline of Human Anatomy, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- State Key Laboratory of Chemical Oncogenomics, Drug Discovery Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Yang Yang
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Key Discipline of Human Anatomy, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Hanbin Ouyang
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Chujiang Xu
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Key Discipline of Human Anatomy, Southern Medical University, Guangzhou, China
| | - Liang Xiong
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Key Discipline of Human Anatomy, Southern Medical University, Guangzhou, China
| | - Yanbin Li
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Key Discipline of Human Anatomy, Southern Medical University, Guangzhou, China
| | - Wenchang Tan
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- State Key Laboratory of Chemical Oncogenomics, Drug Discovery Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Gang Huang
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Key Discipline of Human Anatomy, Southern Medical University, Guangzhou, China
- *Correspondence: Gang Huang, ; Wenhua Huang,
| | - Wenhua Huang
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Key Discipline of Human Anatomy, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Gang Huang, ; Wenhua Huang,
| |
Collapse
|
4
|
Wang M, Deng Y, Xie P, Tan J, Yang Y, Ouyang H, Zhao D, Huang G, Huang W. Optimal Design and Biomechanical Analysis of a Biomimetic Lightweight Design Plate for Distal Tibial Fractures: A Finite Element Analysis. Front Bioeng Biotechnol 2022; 10:820921. [PMID: 35265599 PMCID: PMC8901108 DOI: 10.3389/fbioe.2022.820921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
The treatment of fractures of the distal tibia can be problematic due to the insubstantial soft-tissue covering this part of the anatomy. This study investigates a novel strategy for minimally invasive plate osteosynthesis of distal tibia fractures called bionic lightweight design plating. Following the structure of the animal trabecular bone, we utilized topological mathematical methods to redesign the material layout of the internal fixation device to fulfill the desired lightweight design within given boundary conditions. The results showed that this method can maintain the same stability of the construct as the original plate after a reduction in the original volume by 30%, and the differences in strain energy of plates and maximum node displacement of constructs between the constructs [RP construct vs. LP construct] were not statistically significant (p > 0.05). In the safety assessment of the constructs, the peak stress of plates between constructs was found to not be statistically significantly different under a doubled physiological load (p > 0.05). The average stress of the plates’ elements exceeding the allowable stress was analyzed, and no statistically significant differences were found between the two constructs under axial compression stress conditions (p > 0.05). The average stress of the plates’ elements in the redesigned plating construct under torsional stress conditions was 3.08% less than that of the locked plating construct (p < 0.05). Under the double physiological load condition, 89% of the elements of the plate in the redesigned plating construct and 85% of the elements of the plate in the locked plating construct were lower than the maximum safe stress of the plate, which was 410 MPa (secondary allowable stresses). That reminds us the topology optimization offer a possible way to improve the capacity of soft tissue protection while ensuring the safety of the RP construct by reducing the volume of the implants.
Collapse
Affiliation(s)
- Mian Wang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yuping Deng
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Pusheng Xie
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jinchuan Tan
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yang Yang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hanbin Ouyang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Dongliang Zhao
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Gang Huang
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Gang Huang, ; Wenhua Huang,
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, Guangdong Provincial Key Laboratory of Medical Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Gang Huang, ; Wenhua Huang,
| |
Collapse
|