1
|
Tan L, Zhang H, Li H, Sun S, Lyu Q, Jiang Y. Blueberry extracts antagonize Aβ 25-35 neurotoxicity and exert a neuroprotective effect through MEK-ERK-BDNF/UCH-L1 signaling pathway in rat and mouse hippocampus. Nutr Neurosci 2024; 27:745-760. [PMID: 37647279 DOI: 10.1080/1028415x.2023.2252640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
BACKGROUND The neuroprotective potential of blueberry (BB) extracts against Alzheimer's disease (AD) has been previously hinted at, while its exact mechanism has remained largely enigmatic. OBJECTIVE Our study endeavored to unravel the impacts and mechanisms by which BB extracts ameliorated the learning and memory prowess of AD-afflicted mice, with a specific focus on the MEK-ERK pathway. METHODS We employed 3-month-old APP/PS1 transgenic mice and stratified them into three distinct groups: AD+BB, AD, and control (CT). The Morris Water Maze Test (MWMT) was then administered to gauge their learning and memory faculties. In vitro experiments were executed on Aβ25-35-afflicted rat hippocampal neurons, which were subsequently treated with varying concentrations of BB extracts. We then assessed the expression levels of genes and proteins integral to the MEK-ERKBDNF/UCH-L1 pathway. RESULTS The data showed that the AD mice demonstrated compromised learning and memory faculties in MWMT. However, the AD+BB cohort showcased marked improvements in performance. Furthermore, in the AD subset, significant elevations in the expressions of MEK2 and ERK1/2 were observed, both at the mRNA and protein levels. Conversely, UCH-L1 mRNA expressions exhibited a decline, while BDNF expressions surged significantly. However, post BB extract treatment, the expressions of MEK2 and ERK1/2 were subdued, with UCH-L1 and BDNF mRNA expressions reverting to control levels. CONCLUSIONS Our findings propounded that BB extracts could offer therapeutic promise for AD by bolstering learning and memory capacities. The unwarranted activation of the MEK-ERK pathway, coupled with the aberrant expressions of BDNF and UCH-L1, might underpin AD's pathogenesis.
Collapse
Affiliation(s)
- Long Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| | - Han Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Haiqiang Li
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
- Yantai Economic and Technological Development Area Hospital, Yantai Economic and Technological Development Area, Yantai, People's Republic of China
| | - Shoudan Sun
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
- Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Quanjun Lyu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yugang Jiang
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Shah A, Mir PA, Adnan M, Patel M, Maqbool M, Mir RH, Masoodi MH. Synthetic and Natural Bioactive Molecules in Balancing the Crosstalk among Common Signaling Pathways in Alzheimer's Disease: Understanding the Neurotoxic Mechanisms for Therapeutic Intervention. ACS OMEGA 2023; 8:39964-39983. [PMID: 37929080 PMCID: PMC10620788 DOI: 10.1021/acsomega.3c05662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The structure and function of the brain greatly rely on different signaling pathways. The wide variety of biological processes, including neurogenesis, axonal remodeling, the development and maintenance of pre- and postsynaptic terminals, and excitatory synaptic transmission, depends on combined actions of these molecular pathways. From that point of view, it is important to investigate signaling pathways and their crosstalk in order to better understand the formation of toxic proteins during neurodegeneration. With recent discoveries, it is established that the modulation of several pathological events in Alzheimer's disease (AD) due to the mammalian target of rapamycin (mTOR), Wnt signaling, 5'-adenosine monophosphate activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), and sirtuin 1 (Sirt1, silent mating-type information regulator 2 homologue 1) are central to the key findings. These include decreased amyloid formation and inflammation, mitochondrial dynamics control, and enhanced neural stability. This review intends to emphasize the importance of these signaling pathways, which collectively determine the fate of neurons in AD in several ways. This review will also focus on the role of novel synthetic and natural bioactive molecules in balancing the intricate crosstalk among different pathways in order to prolong the longevity of AD patients.
Collapse
Affiliation(s)
- Abdul
Jalil Shah
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa
College of Pharmacy, G.T. Road, Amritsar 143002, Punjab, India
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
| | - Mitesh Patel
- Research
and Development Cell, Department of Biotechnology, Parul Institute
of Applied Sciences, Parul University, Vadodara 391760, India
| | - Mudasir Maqbool
- Pharmacy
Practice Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
3
|
Iqubal A, Rahman SO, Ahmed M, Bansal P, Haider MR, Iqubal MK, Najmi AK, Pottoo FH, Haque SE. Current Quest in Natural Bioactive Compounds for Alzheimer's Disease: Multi-Targeted-Designed-Ligand Based Approach with Preclinical and Clinical Based Evidence. Curr Drug Targets 2021; 22:685-720. [PMID: 33302832 DOI: 10.2174/1389450121999201209201004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease is a common and most chronic neurological disorder (NDs) associated with cognitive dysfunction. Pathologically, Alzheimer's disease (AD) is characterized by the presence of β-amyloid (Aβ) plaques, hyper-phosphorylated tau proteins, and neurofibrillary tangles, however, persistence oxidative-nitrative stress, endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory cytokines, pro-apoptotic proteins along with altered neurotransmitters level are common etiological attributes in its pathogenesis. Rivastigmine, memantine, galantamine, and donepezil are FDA approved drugs for symptomatic management of AD, whereas tacrine has been withdrawn because of hepatotoxic profile. These approved drugs only exert symptomatic relief and exhibit poor patient compliance. In the current scenario, the number of published evidence shows the neuroprotective potential of naturally occurring bioactive molecules via their antioxidant, anti-inflammatory, antiapoptotic and neurotransmitter modulatory properties. Despite their potent therapeutic implications, concerns have arisen in context to their efficacy and probable clinical outcome. Thus, to overcome these glitches, many heterocyclic and cyclic hydrocarbon compounds inspired by natural sources have been synthesized and showed improved therapeutic activity. Computational studies (molecular docking) have been used to predict the binding affinity of these natural bioactive as well as synthetic compounds derived from natural sources for the acetylcholine esterase, α/β secretase Nuclear Factor kappa- light-chain-enhancer of activated B cells (NF-kB), Nuclear factor erythroid 2-related factor 2(Nrf2) and other neurological targets. Thus, in this review, we have discussed the molecular etiology of AD, focused on the pharmacotherapeutics of natural products, chemical and pharmacological aspects and multi-targeted designed ligands (MTDLs) of synthetic and semisynthetic molecules derived from the natural sources along with some important on-going clinical trials.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Syed Obaidur Rahman
- Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Pratichi Bansal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441, Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| |
Collapse
|
4
|
Tran PH, Tran TT. Blueberry Supplementation in Neuronal Health and Protective Technologies for Efficient Delivery of Blueberry Anthocyanins. Biomolecules 2021; 11:biom11010102. [PMID: 33466731 PMCID: PMC7828789 DOI: 10.3390/biom11010102] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Blueberries are consumed as healthy fruits that provide a variety of benefits to the nervous system. Scientists have found that blueberries can be used as a daily edible source for supplementation to prevent and minimize complexities of age-related diseases as well as to improve learning and memory in children. Anthocyanins are the most mentioned compounds among the components in blueberries, as they play a major role in providing the health benefits of this fruit. However, while they are highly active in impeding biological impairment in neuronal functions, they have poor bioavailability. This review focuses on neurological investigations of blueberries from in vitro cell studies to in vivo studies, including animal and human studies, with respect to their positive outcomes of neuroprotection and intervention in neurodegenerative conditions. Readers will also find information on the bioavailability of anthocyanins and the considerable factors affecting them so that they can make informed decisions regarding the daily consumption of blueberries. In this context, the ways in which blueberries or blueberry supplementation forms are consumed and which of these forms is best for maximizing the health benefits of blueberries should be considered important decision-making factors in the consumption of blueberries; all of these aspects are covered in this review. Finally, we discuss recent technologies that have been employed to improve the bioavailability of blueberry anthocyanins in the development of effective delivery vehicles supporting brain health.
Collapse
Affiliation(s)
- Phuong H.L. Tran
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Australia;
| | - Thao T.D. Tran
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- The Faculty of Pharmacy, Duy Tan University, Danang 550000, Vietnam
- Correspondence:
| |
Collapse
|
5
|
Ma L, Sun Z, Zeng Y, Luo M, Yang J. Molecular Mechanism and Health Role of Functional Ingredients in Blueberry for Chronic Disease in Human Beings. Int J Mol Sci 2018; 19:E2785. [PMID: 30223619 PMCID: PMC6164568 DOI: 10.3390/ijms19092785] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Functional ingredients in blueberry have the best health benefits. To obtain a better understanding of the health role of blueberry in chronic disease, we conducted systematic preventive strategies for functional ingredients in blueberry, based on comprehensive databases, especially PubMed, ISI Web of Science, and CNKI for the period 2008⁻2018. Blueberry is rich in flavonoids (mainly anthocyanidins), polyphenols (procyanidin), phenolic acids, pyruvic acid, chlorogenic acid, and others, which have anticancer, anti-obesity, prevent degenerative diseases, anti-inflammation, protective properties for vision and liver, prevent heart diseases, antidiabetes, improve brain function, protective lung properties, strong bones, enhance immunity, prevent cardiovascular diseases, and improve cognitive decline. The anthocyanins and polyphenols in blueberry are major functional ingredients for preventive chronic disease. These results support findings that blueberry may be one of the best functional fruits, and further reveals the mechanisms of anthocyanins and polyphenols in the health role of blueberry for chronic disease. This paper may be used as scientific evidence for developing functional foods, nutraceuticals, and novel drugs of blueberry for preventive chronic diseases.
Collapse
Affiliation(s)
- Luyao Ma
- Economics and Management College, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Southwest Forestry University, Ministry of Education, Kunming 650224, China.
| | - Zhenghai Sun
- Economics and Management College, Southwest Forestry University, Kunming 650224, China.
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Southwest Forestry University, Ministry of Education, Kunming 650224, China.
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Mingcan Luo
- Key Laboratory for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Southwest Forestry University, Ministry of Education, Kunming 650224, China.
| | - Jiazhen Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| |
Collapse
|