2
|
Sarnyai Z, Ben-Shachar D. Schizophrenia, a disease of impaired dynamic metabolic flexibility: A new mechanistic framework. Psychiatry Res 2024; 342:116220. [PMID: 39369460 DOI: 10.1016/j.psychres.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Schizophrenia is a chronic, neurodevelopmental disorder with unknown aetiology and pathophysiology that emphasises the role of neurotransmitter imbalance and abnormalities in synaptic plasticity. The currently used pharmacological approach, the antipsychotic drugs, which have limited efficacy and an array of side-effects, have been developed based on the neurotransmitter hypothesis. Recent research has uncovered systemic and brain abnormalities in glucose and energy metabolism, focusing on altered glycolysis and mitochondrial oxidative phosphorylation. These findings call for a re-conceptualisation of schizophrenia pathophysiology as a progressing bioenergetics failure. In this review, we provide an overview of the fundamentals of brain bioenergetics and the changes identified in schizophrenia. We then propose a new explanatory framework positing that schizophrenia is a disease of impaired dynamic metabolic flexibility, which also reconciles findings of abnormal glucose and energy metabolism in the periphery and in the brain along the course of the disease. This evidence-based framework and testable hypothesis has the potential to transform the way we conceptualise this debilitating condition and to develop novel treatment approaches.
Collapse
Affiliation(s)
- Zoltán Sarnyai
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel; Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel.
| |
Collapse
|
3
|
Samal I, Bhoi TK, Raj MN, Majhi PK, Murmu S, Pradhan AK, Kumar D, Paschapur AU, Joshi DC, Guru PN. Underutilized legumes: nutrient status and advanced breeding approaches for qualitative and quantitative enhancement. Front Nutr 2023; 10:1110750. [PMID: 37275642 PMCID: PMC10232757 DOI: 10.3389/fnut.2023.1110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Underutilized/orphan legumes provide food and nutritional security to resource-poor rural populations during periods of drought and extreme hunger, thus, saving millions of lives. The Leguminaceae, which is the third largest flowering plant family, has approximately 650 genera and 20,000 species and are distributed globally. There are various protein-rich accessible and edible legumes, such as soybean, cowpea, and others; nevertheless, their consumption rate is far higher than production, owing to ever-increasing demand. The growing global urge to switch from an animal-based protein diet to a vegetarian-based protein diet has also accelerated their demand. In this context, underutilized legumes offer significant potential for food security, nutritional requirements, and agricultural development. Many of the known legumes like Mucuna spp., Canavalia spp., Sesbania spp., Phaseolus spp., and others are reported to contain comparable amounts of protein, essential amino acids, polyunsaturated fatty acids (PUFAs), dietary fiber, essential minerals and vitamins along with other bioactive compounds. Keeping this in mind, the current review focuses on the potential of discovering underutilized legumes as a source of food, feed and pharmaceutically valuable chemicals, in order to provide baseline data for addressing malnutrition-related problems and sustaining pulse needs across the globe. There is a scarcity of information about underutilized legumes and is restricted to specific geographical zones with local or traditional significance. Around 700 genera and 20,000 species remain for domestication, improvement, and mainstreaming. Significant efforts in research, breeding, and development are required to transform existing local landraces of carefully selected, promising crops into types with broad adaptability and economic viability. Different breeding efforts and the use of biotechnological methods such as micro-propagation, molecular markers research and genetic transformation for the development of underutilized crops are offered to popularize lesser-known legume crops and help farmers diversify their agricultural systems and boost their profitability.
Collapse
Affiliation(s)
- Ipsita Samal
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack, Odisha, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute, Jodhpur, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prasanta Kumar Majhi
- Regional Research and Technology Transfer Station, Odisha University of Agriculture and Technology, Keonjhar, Odisha, India
| | - Sneha Murmu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dilip Kumar
- ICAR-National Institute of Agricultural Economics and Policy Research, New Delhi, India
| | | | | | - P. N. Guru
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana, India
| |
Collapse
|
4
|
Fernandes MS, Pedroza AA, de Andrade Silva SC, de Lemos MDT, Bernardo EM, Pereira AR, Dos Santos TM, Lagranha C. Undernutrition during development modulates endoplasmic reticulum stress genes in the hippocampus of juvenile rats: Involvement of oxidative stress. Brain Res 2022; 1797:148098. [PMID: 36162496 DOI: 10.1016/j.brainres.2022.148098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
To evaluate whether exercise training mitigates the deleterious effects of undernutrition during the developmental period in juvenile Wistar rats. Pregnant Wistar rats were fed with a diet containing 17 % or 8 % casein during pregnancy and lactation. At 30 days of life, male offspring were divided into 4 groups: Low-Protein non-trained (LS), Low-Protein Trained (LT), Normoprotein non-trained (NS), and Normoprotein Trained (NT). Trained rats performed aerobic exercise training (AET) for 4 weeks, 5 days a week, 1 h a day. 24 h from the last day of training, the animals were sacrificed. The tissues were removed to analyze indicators of mitochondrial metabolism, oxidative stress, and gene expression of GRP78, PERK, ATF6 ER stress markers, and BDNF. The results showed that undernutrition during development promotes deleterious effects on mitochondrial oxidative metabolism and induces reticulum stress in the hippocampus of juvenile rats. On the other hand, AET improves mitochondrial function and increases enzymatic and non-enzymatic antioxidant capacity, as well as declines ER stress. AET at moderate intensity for 4 weeks in male juvenile Wistar rats acts as a lifestyle intervention opposing the negative effects induced by a protein-restricted maternal diet.
Collapse
Affiliation(s)
- Matheus Santos Fernandes
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil; Physical Education and Sport Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Anderson Apolônio Pedroza
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Severina Cássia de Andrade Silva
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Maria Daniele Teixeira de Lemos
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Elenilson M Bernardo
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Allifer R Pereira
- Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil
| | - Tony Meireles Dos Santos
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Physical Education and Sport Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Claudia Lagranha
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil; Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, PE, Brazil; Laboratory of Biochemistry and Exercise Biochemistry / CAV, Federal University of Pernambuco, Vitoria de Santo Antão, PE, Brazil.
| |
Collapse
|
5
|
Qin R, Ding Y, Lu Q, Jiang Y, Du J, Song C, Lv H, Lv S, Tao S, Huang L, Xu X, Liu C, Jiang T, Wang Z, Ma H, Jin G, Xia Y, Hu Z, Zhang F, Lin Y. Associations of maternal dietary patterns during pregnancy and fetal intrauterine development. Front Nutr 2022; 9:985665. [PMID: 36185689 PMCID: PMC9520705 DOI: 10.3389/fnut.2022.985665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary pattern is excellent in reflecting an individual's eating conditions. Longitudinal data on fetal growth can reflect the process of intrauterine growth. We aimed to evaluate the associations between maternal dietary patterns and intrauterine parameters in middle and late pregnancy. The present study was conducted within Jiangsu Birth Cohort (JBC) study. Dietary information was assessed with a food frequency questionnaire (FFQ) in the second and third trimester of gestation. B-ultrasound scans were performed to obtain fetal intrauterine parameters, including head circumference (HC), femur length (FL), abdominal circumference (AC), and estimated fetal weight (EFW). Exploratory factor analysis was used to extract dietary patterns. Multiple linear regression and linear mixed-effects model (LMM) were used to investigate the association between maternal dietary patterns and fetal growth. A total of 1,936 pregnant women were eligible for the study. We observed inverse associations of maternal "Vegetables and fish" and "Snack and less eggs" patterns during mid-pregnancy with fetal HC Z-score, respectively ("Vegetables and fish": β = -0.09, 95% CI -0.12, -0.06; "Snack and less eggs": β = -0.05, 95% CI -0.08, -0.02). On the contrary, "Animal internal organs, thallophyte and shellfish" pattern in the second trimester was associated with increased HC Z-scores (β = 0.04, 95% CI 0.02, 0.06). Consistently, score increase in "Vegetables and fish" pattern in the third trimester was inversely associated with the Z-scores of HC (β = -0.05, 95% CI -0.09, -0.02), while "Meat and less nuts" pattern was positively correlated with the Z-scores of HC (β = 0.04, 95% CI 0.02, 0.07). As compared to the fetus whose mothers at the lowest tertile of "Snack and less eggs" pattern in both trimesters, those whose mothers at the highest tertile demonstrated 1.08 fold (RR = 2.10, 95% CI 1.34-3.28) increased risk of small HC for gestational age (GA). No correlation was observed between maternal dietary patterns and other intrauterine parameters. Our results suggested the effects of maternal dietary patterns on fetal growth, particularly HC. These findings highlighted the adverse impact of unhealthy dietary pattern on fetal growth, might provide evidence for strategies to prevent intrauterine dysplasia and dietary guidelines during pregnancy.
Collapse
Affiliation(s)
- Rui Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ye Ding
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yangqian Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ci Song
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Siyuan Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Toxicology and Nutritional Science, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cong Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tao Jiang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhixu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Feng Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Obstetrics and Gynecology Hospital, National Health Commission (NHC) Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|