1
|
Mi L, Xing Z, Zhang Y, He T, Su A, Wei T, Li Z, Wu W. Unveiling Gambogenic Acid as a Promising Antitumor Compound: A Review. PLANTA MEDICA 2024; 90:353-367. [PMID: 38295847 DOI: 10.1055/a-2258-6663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Gambogenic acid is a derivative of gambogic acid, a polyprenylated xanthone isolated from Garcinia hanburyi. Compared with the more widely studied gambogic acid, gambogenic acid has demonstrated advantages such as a more potent antitumor effect and less systemic toxicity than gambogic acid according to early investigations. Therefore, the present review summarizes the effectiveness and mechanisms of gambogenic acid in different cancers and highlights the mechanisms of action. In addition, drug delivery systems to improve the bioavailability of gambogenic acid and its pharmacokinetic profile are included. Gambogenic acid has been applied to treat a wide range of cancers, such as lung, liver, colorectal, breast, gastric, bladder, and prostate cancers. Gambogenic acid exerts its antitumor effects as a novel class of enhancer of zeste homolog 2 inhibitors. It prevents cancer cell proliferation by inducing apoptosis, ferroptosis, and necroptosis and controlling the cell cycle as well as autophagy. Gambogenic acid also hinders tumor cell invasion and metastasis by downregulating metastasis-related proteins. Moreover, gambogenic acid increases the sensitivity of cancer cells to chemotherapy and has shown effects on multidrug resistance in malignancy. This review adds insights for the prevention and treatment of cancers using gambogenic acid.
Collapse
Affiliation(s)
- Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Phang YL, Zheng C, Xu H. Structural diversity and biological activities of caged Garcinia xanthones: recent updates. ACTA MATERIA MEDICA 2022; 1. [DOI: 10.15212/amm-2022-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Caged xanthones are a class of natural compounds with approximately 200 members that are commonly isolated from the Garcinia genus in the Clusiaceae (formerly Guttiferae) family. They are often characterized by a notable 4-oxa-tricyclo[4.3.1.03,7]dec-2-one (caged) architecture with a common xanthone backbone. Because most caged xanthones have potent anticancer properties, they have become a target of interest in natural product chemistry. The unique chemical architectures and increasingly identified biological importance of these compounds have stimulated many studies and intense interest in their isolation, biological evaluation and mechanistic studies. This review summarizes recent progress and development in the chemistry and biological activity of caged Garcinia xanthones and of several compounds of non-Garcinia origin, from the years 2008 to 2021, providing an in-depth discussion of their structural diversity and medicinal potential. A preliminary discussion on structure-activity relationships is also provided.
Collapse
|
3
|
Su R, Wu X, Ke F. Long Non-Coding RNA HOTAIR Expression and Clinical Significance in Patients with Gestational Diabetes. Int J Gen Med 2021; 14:9945-9950. [PMID: 34938112 PMCID: PMC8687518 DOI: 10.2147/ijgm.s341106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose The global incidence of gestational diabetes mellitus (GDM) is increasing year by year, and many studies have proved that long non-coding RNA (lncRNA) is involved in the regulation of GDM. The purpose of this study was to investigate the expression of HOTAIR in GDM patients and its clinical significance. Patients and Methods Ninety-eight healthy pregnant women and 99 pregnant women diagnosed with GDM were enrolled in this study. Blood samples were collected from all participants and used for qRT-PCR analysis to determine the serum HOTAIR levels. The ROC curve was constructed to evaluate the diagnostic value of HOTAIR for GDM. Pearson correlation coefficient was used to estimate the correlation between HOTAIR and clinical indicators of patients. Logistic regression analysis was performed to evaluate the independent predictors of GDM. Results The level of HOTAIR was augmented in GDM group compared with healthy controls. ROC curve revealed that HOTAIR as a diagnostic marker of GDM has high sensitivity and specificity. Pearson correlation coefficient showed that HOTAIR level was positively correlated with body mass index, fasting plasma glucose, 1-hour plasma glucose and 2-hour plasma glucose. Logistic regression analysis shows that HOTAIR is an independent factor of the occurrence of GDM. Conclusion The abnormal expression of HOTAIR in pregnant women with GDM made it a potential diagnostic biomarker for GDM.
Collapse
Affiliation(s)
- Ruifen Su
- Department of Obstetrics and Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, People's Republic of China
| | - Xiaoli Wu
- Department of Obstetrics and Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, People's Republic of China
| | - Fengmei Ke
- Department of Obstetrics and Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, People's Republic of China
| |
Collapse
|
4
|
Qin Y, Zhou RR, Jin J, Cheng F, Shen BB, Zeng HL, Wan D, Zhong C, Xie J, Shu J, Shi SY, Zhang SH. Indole-based alkaloids from Ophiocordyceps xuefengensis. PHYTOCHEMISTRY 2021; 181:112536. [PMID: 33160226 DOI: 10.1016/j.phytochem.2020.112536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 08/17/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Seven undescribed indole-based alkaloids, xuefengins A-D and xuefenglasins A-C, were isolated from natural Ophiocordyceps xuefengensis, along with six known alkaloids. Their structures were elucidated by comprehensive spectroscopy, with absolute configurations confirmed by comparison with calculated electronic circular dichroism spectra. Eleven of the isolates were tested for cytotoxicity against the U937, NB4, MCF-7, Hep G2, and A549 cancer cell lines. Two compounds exhibited moderate activities, with IC50 values of 2.83-25.68 μM and 1.54-12.16 μM. Further pharmacological studies showed that these two compounds inhibit cell proliferation by inducing apoptosis, and decreasing p38 and caspase-3 levels in A549 cells.
Collapse
Affiliation(s)
- You Qin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013, China; Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Rong-Rong Zhou
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jian Jin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Fei Cheng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Bing-Bing Shen
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Hong-Liang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Dan Wan
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Can Zhong
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Jing Xie
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Jun Shu
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013, China; Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shu-Yun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Shui-Han Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013, China.
| |
Collapse
|
5
|
Lin TY, Chang JL, Xun Y, Zhao Y, Peng W, Yang W, Ding BJ, Chen WD. Folic acid-modified nonionic surfactant vesicles for gambogenic acid targeting: Preparation, characterization, and in vitro and in vivo evaluation. Kaohsiung J Med Sci 2020; 36:344-353. [PMID: 32293112 DOI: 10.1002/kjm2.12162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
The aim of present study was to develop folic acid (FA)-modified nonionic surfactant vesicles (NISVs, niosomes) as carrier systems for targeted delivery of gambogenic acid (GNA). The FA-GNA-NISVs exhibited a mean particle size of 180.77 ± 2.41 nm with a narrow poly dispersion index of 0.147 ± 0.08 determined by dynamic light scattering. Transmission electron microscopy also revealed that the FA-GNA-NISVs were spherical with double-layer structure. Entrapment efficiency (EE%) and zeta potential of the optimal FA-GNA-NISVs were 87.84 ± 1.06% and -37.33 ± 0.33 mV, respectively. Differential scanning calorimetry demonstrated that the GNA was in a molecular or amorphous state inside the FA-NISVs in vitro release profiles suggested that FA-GNA-NISVs could release GNA at a sustained manner, and less than 60% of GNA was released from the FA-NISVs within 12 hours of dialysis. in vivo pharmacokinetic results illustrated that FA-GNA-NISVs had considerably higher Cmax , area under curve (AUC0 - t ) and accumulation in lung. The cell proliferation study shown that the FA-GNA-NISVs significantly enhanced the in vitro cytotoxicity against A549 cells. Flow cytometry and fluorescence microscopy further demonstrated that the FA-GNA-NISVs increased apoptosis compared with nonmodified GNA-NISVs and free GNA. Moreover, FA-GNA-NISVs induced A549 cell apoptosis in a dose-dependent manner. In addition, cellular uptake assays showed a higher uptake of FA-GNA-NISVs than GNA-NISVs as well as free GNA. Taken together, it could be concluded that FA-GNA-NISVs were proposed as a novel targeting carriers for efficient delivering of GNA to cancers cells.
Collapse
Affiliation(s)
- Tong-Yuan Lin
- The Department of Pharmacy, The Second People's Hospital of Wu Hu, Wu Hu, China
| | - Jia-Li Chang
- The College of Pharmacy, Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Xun
- The Department of Pharmacy, The Second People's Hospital of Wu Hu, Wu Hu, China
| | - Yi Zhao
- The Department of Pharmacy, The Second People's Hospital of Wu Hu, Wu Hu, China
| | - Wang Peng
- The Department of Pharmacy, The Second People's Hospital of Wu Hu, Wu Hu, China
| | - Wang Yang
- The Department of Pharmacy, The Second People's Hospital of Wu Hu, Wu Hu, China
| | - Bai-Jing Ding
- The Department of Pharmacy, The Second People's Hospital of Wu Hu, Wu Hu, China
| | - Wei-Dong Chen
- The College of Pharmacy, Institute of Drug Metabolism, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Wang B, Cheng W, Zhang C, Bao Y, Zha L, Qian J, Hong L, Chen W. Self-assembled micelles based on gambogenic acid-phospholipid complex for sustained-release drug delivery. J Microencapsul 2019; 36:566-575. [DOI: 10.1080/02652048.2019.1656294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Beilei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Weiye Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Caiyun Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Youmei Bao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| | - Liqiong Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Jiajia Qian
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Lufeng Hong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
| |
Collapse
|
7
|
Liu H, Chen H, Cao F, Peng D, Chen W, Zhang C. Amphiphilic Block Copolymer Poly (Acrylic Acid)-B-Polycaprolactone as a Novel pH-sensitive Nanocarrier for Anti-Cancer Drugs Delivery: In-vitro and In-vivo Evaluation. Polymers (Basel) 2019; 11:E820. [PMID: 31067730 PMCID: PMC6572073 DOI: 10.3390/polym11050820] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022] Open
Abstract
Gambogenic acid (GNA) has been demonstrated with outstanding antitumor activity as a potential antitumor drug in recent years. However, the low solubility and deficient bioavailability of GNA seriously hinder its practical application in the clinic area. In this study, a novel amphiphilic block copolymer, poly (acrylic acid)-b-polycaprolactone (PAA-b-PCL) is prepared and assembled into pH-responsive polymeric micelles (PMs) as one mold of drug delivery system (DDS) with unique properties. Relevant investigation on PMs exhibits excellent carrying potential and pH-dependent release performance for GNA. The drug loading capacity (DLC) and drug loading efficiency (DLE) for GNA-loaded PMs can be achieved as high as 15.20 ± 0.07% and 83.67 ± 0.49%, respectively. The in vitro experiments indicate that the GNA releasing time, cytotoxicity, and cellular uptake are significantly enhanced. Especially, the peak concentration (Cmax) and area under the curve (AUC) are promoted sharply in the GNA-loaded PMs concentration-time curve. This study not only provides a novel way to widen the application of anticancer GNA in the future, but also extends the potential of stimuli-responsive copolymers to biomedical applications.
Collapse
Affiliation(s)
- Huanhuan Liu
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hong Chen
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Fuhu Cao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Daiyin Peng
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Weidong Chen
- The College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Chuanling Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
8
|
Ma Z, Fan Y, Wu Y, Kebebe D, Zhang B, Lu P, Pi J, Liu Z. Traditional Chinese medicine-combination therapies utilizing nanotechnology-based targeted delivery systems: a new strategy for antitumor treatment. Int J Nanomedicine 2019; 14:2029-2053. [PMID: 30962686 PMCID: PMC6435121 DOI: 10.2147/ijn.s197889] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer is a major public health problem, and is now the world’s leading cause of death. Traditional Chinese medicine (TCM)-combination therapy is a new treatment approach and a vital therapeutic strategy for cancer, as it exhibits promising antitumor potential. Nano-targeted drug-delivery systems have remarkable advantages and allow the development of TCM-combination therapies by systematically controlling drug release and delivering drugs to solid tumors. In this review, the anticancer activity of TCM compounds is introduced. The combined use of TCM for antitumor treatment is analyzed and summarized. These combination therapies, using a single nanocarrier system, namely codelivery, are analyzed, issues that require attention are determined, and future perspectives are identified. We carried out a systematic review of >280 studies published in PubMed since 1985 (no patents involved), in order to provide a few basic considerations in terms of the design principles and management of targeted nanotechnology-based TCM-combination therapies.
Collapse
Affiliation(s)
- Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Yuqi Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yumei Wu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Peng Lu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Jiaxin Pi
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ; .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China, ;
| |
Collapse
|
9
|
Xu Q, Guo J, Chen W. Gambogenic acid reverses P-glycoprotein mediated multidrug resistance in HepG2/Adr cells and its underlying mechanism. Biochem Biophys Res Commun 2019; 508:882-888. [DOI: 10.1016/j.bbrc.2018.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 01/05/2023]
|
10
|
Dioscin ameliorates intestinal ischemia/reperfusion injury via adjusting miR-351-5p/MAPK13-mediated inflammation and apoptosis. Pharmacol Res 2019; 139:431-439. [PMID: 30503840 DOI: 10.1016/j.phrs.2018.11.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022]
|
11
|
Huang T, Zhang H, Wang X, Xu L, Jia J, Zhu X. Gambogenic acid inhibits the proliferation of small‑cell lung cancer cells by arresting the cell cycle and inducing apoptosis. Oncol Rep 2018; 41:1700-1706. [PMID: 30592285 PMCID: PMC6365701 DOI: 10.3892/or.2018.6950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/13/2018] [Indexed: 12/27/2022] Open
Abstract
Gambogenic acid (GNA), which is an important active compound present in gamboge, exerts anticancer activity in various types of tumor cells. However, the effect of GNA on small‑cell lung cancer (SCLC) cell lines and the underlying mechanism involved still remain unclear. In the present study, GNA inhibited the proliferation and cell cycle progression of SCLC cells. GNA also promoted the apoptosis of SCLC cells in a dose‑dependent manner, which is associated with modulating the levels of proteins involved in apoptosis pathways in NCI‑H446 and NCI‑H1688 cells. The results demonstrated that GNA increased the level of cleaved caspase‑3, ‑8 and ‑9, and Bax but decreased the expression of anti‑apoptotic protein, Bcl‑2. Furthermore, similar results were obtained in a mouse tumor xenograft model. Additionally, GNA exhibit low toxicity in tissues when administered to mice in the SCLC xenograft models. Collectively, our findings demonstrated that GNA significantly inhibited the proliferation of SCLC cells and promoted cell apoptosis via cell cycle arrest and induction of apoptosis.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Respiratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, The Affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu 224001, P.R. China
| | - Xiyong Wang
- Department of Respiratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Lu Xu
- Department of Respiratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jinfang Jia
- Department of Respiratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoli Zhu
- Department of Respiratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
12
|
Chen R, Zhang H, Liu P, Wu X, Chen B. Gambogenic acid synergistically potentiates bortezomib-induced apoptosis in multiple myeloma. J Cancer 2017; 8:839-851. [PMID: 28382147 PMCID: PMC5381173 DOI: 10.7150/jca.17657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/26/2016] [Indexed: 12/17/2022] Open
Abstract
Background: Although the introduction of protease inhibitor bortezomib (BTZ) and immunomodulatory agent lenalidomide has led to improved outcomes in patients with multiple myeloma (MM), the disease remains incurable. Gambogenic acid (GNA), a polyprenylated xanthone isolated from the traditional Chinese medicine gamboge, has been reported to have potent antitumor activity and can effectively inhibit the survival and proliferation of cancer. In this study, we hypothesized that GNA could synergistically potentiate BTZ-induced apoptosis of MM cells and that combining BTZ and GNA may provide a more effective approach to treat MM. Hence, we investigate the in vitro and in vivo effects of BTZ and GNA, alone or in combination, against myeloma MM.1S cells. Methods: Cell counting kit-8 (CCK-8) assay, combination index (CI) isobologram, flow cytometry, western blot, xenograft tumor models, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and immunochemistry were used in this study. Results: The results showed that BTZ and GNA combination treatment resulted in a strong synergistic action against the MM.1S cell line. Increased G2/M phase cells were triggered by BTZ, GNA and the combined treatment. The combined treatment could induce more markedly apoptosis of MM.1S cells via the activation of PARP cleavage, P53, Caspase-3 cleavage and Bax and inhibition of Bcl-2 expression. An increased antitumor effects of combination therapy of BTZ and GNA on MM.1S xenograft models were observed, and combining BTZ and GNA was found to be superior to a single agent. Conclusions: Our data support that a synergistic antitumor activity exists between BTZ and GNA, and provide a rationale for successful utilization of dual BTZ and GNA in MM chemotherapy in the future.
Collapse
Affiliation(s)
- Runzhe Chen
- Department of Hematology and Oncology (Key Discipline of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, P.R. China
| | - Hongming Zhang
- Department of Hematology and Oncology (Key Discipline of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, P.R. China
| | - Ping Liu
- Department of Hematology and Oncology (Key Discipline of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, P.R. China
| | - Xue Wu
- Department of Hematology and Oncology (Key Discipline of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, P.R. China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Discipline of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, P.R. China
| |
Collapse
|
13
|
Lin T, Huang X, Wang Y, Zhu T, Luo Q, Wang X, Zhou K, Cheng H, Peng D, Chen W. Long circulation nanostructured lipid carriers for gambogenic acid: formulation design, characterization, and pharmacokinetic. Xenobiotica 2016; 47:793-799. [DOI: 10.1080/00498254.2016.1229084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tongyuan Lin
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xia Huang
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yanyan Wang
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Tingting Zhu
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Luo
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoxiao Wang
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Kai Zhou
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Cheng
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Chen
- Pharmacokinetic Laboratory and Department of Clinical Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
14
|
Yu XJ, Zhao Q, Wang XB, Zhang JX, Wang XB. Gambogenic acid induces proteasomal degradation of CIP2A and sensitizes hepatocellular carcinoma to anticancer agents. Oncol Rep 2016; 36:3611-3618. [PMID: 27779687 DOI: 10.3892/or.2016.5188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/11/2016] [Indexed: 11/06/2022] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein that is overexpressed in many human malignancies. It regulates phosphorylated AKT and stabilizes c‑Myc in cell proliferation and tumor formation, suggesting that CIP2A plays an essential role in the development of cancer. In the present study, we report that a natural compound, gambogenic acid (GEA), induced the degradation of CIP2A via the ubiquitin‑proteasome pathway. Interestingly, the combination of GEA and proteasome inhibitors potentiated the accumulation of ubiquitinated CIP2A and aggresome formation. In addition, GEA exhibited an inhibitory effect on cell proliferation and CIP2A‑downstream signaling molecules (c‑Myc and pAKT). Furthermore, GEA and CIP2A silencing enhanced the chemosensitivity of hepatocellular carcinoma cells to anticancer agents, suggesting that a combination of a CIP2A inhibitor and anticancer agents could be a valuable clinical therapeutic strategy. These results indicate that GEA is a CIP2A inhibitor that interferes with the ubiquitination and destabilization of CIP2A, providing a promising strategy to enhance the combinational therapy for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xian-Jun Yu
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital and School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qun Zhao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Xuan-Bin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital and School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Jing-Xuan Zhang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital and School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiao-Bo Wang
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| |
Collapse
|
15
|
Luo Q, Lin T, Zhang CY, Zhu T, Wang L, Ji Z, Jia B, Ge T, Peng D, Chen W. A novel glyceryl monoolein-bearing cubosomes for gambogenic acid: Preparation, cytotoxicity and intracellular uptake. Int J Pharm 2015. [DOI: 10.1016/j.ijpharm.2015.07.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
He Y, Ding J, Lin Y, Li J, Shi Y, Wang J, Zhu Y, Wang K, Hu X. Gambogenic acid alters chemosensitivity of breast cancer cells to Adriamycin. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:181. [PMID: 26066793 PMCID: PMC4486132 DOI: 10.1186/s12906-015-0710-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/05/2015] [Indexed: 12/26/2022]
Abstract
Background Breast cancer remains a major health problem worldwide, and is becoming increasingly resistant to traditional drug treatments. For instance, Adriamycin (ADR) is beneficial for the treatment of breast cancer. However, its wide application often leads to drug resistance in clinic practice, which results in treatment failure. Gambogenic acid (GNA), a polyprenylated xanthone isolated from the traditional medicine gamboge, has been reported to effectively inhibit the survival and proliferation of cancer cells. Its effects on ADR resistance have not yet been reported in breast cancer. In this study, we examined the ability of GNA to modulate ADR resiatance and the molecular mechanisms underlying this process using a cell based in vitro system. Methods An MTT assay was used to evaluate the inhibitory effect of the drugs on the growth of MCF-7 and MCF-7/ADR cell lines. The effects of drugs on apoptosis were detected using Annexin-V APC/7-AAD double staining. The expression of apoptosis-related proteins and the proteins in the PTEN/PI3K/AKT pathway were evaluated by Western blot analysis. Results In the MCF-7/ADR cell lines, the IC50 (half maximal inhibitory concentration) of the group that received combined treatment with GNA and ADR was significantly lower than that in the ADR group, and this value decreased with an increasing concentration of GNA. In parallel, GNA treatment increased the chemosensitivity of breast cancer cells to ADR. The cell apoptosis and cell cycle anaysis indicated that the anti-proliferative effect of GNA is in virtue of increased G0/G1 arrest and potentiated apoptosis. When combined with GNA in MCF-7/ADR cell lines, the expression levels of the tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome ten) and the apoptosis-related proteins caspase-3 and capsese-9 were significantly increased, while the expression of phosphorylated AKT was decreased. Conclusions Our study has indicated a potential role for GNA to increase the chemosensitivity of breast cancer cells to ADR. This modulatory role was mediated by suppression of the PTEN/PI3K/AKT pathway that led to apoptosis in MCF-7/ADR cells. This work suggests that GNA may be used as a regulatory agent for treating ADR resistance in breast cancer patients.
Collapse
|
17
|
Chen JP, Wang DL, Yang LL, Wang CY, Wang SS. Ultra-high-performance liquid chromatography tandem mass spectrometry method for the determination of gambogenic acid in dog plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2014; 28:1854-9. [DOI: 10.1002/bmc.3231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/21/2014] [Accepted: 04/02/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Jin Pei Chen
- College of Pharmacy, Laboratory of Drug Metabolism and Pharmacokinetics; Anhui University of Chinese Medicine; Hefei Anhui China
| | - Dian Lei Wang
- College of Pharmacy, Laboratory of Drug Metabolism and Pharmacokinetics; Anhui University of Chinese Medicine; Hefei Anhui China
| | - Li Li Yang
- College of Pharmacy, Laboratory of Drug Metabolism and Pharmacokinetics; Anhui University of Chinese Medicine; Hefei Anhui China
| | - Chen Yin Wang
- College of Pharmacy, Laboratory of Drug Metabolism and Pharmacokinetics; Anhui University of Chinese Medicine; Hefei Anhui China
| | - Shan Shan Wang
- College of Pharmacy, Laboratory of Drug Metabolism and Pharmacokinetics; Anhui University of Chinese Medicine; Hefei Anhui China
| |
Collapse
|
18
|
Gambogenic acid kills lung cancer cells through aberrant autophagy. PLoS One 2014; 9:e83604. [PMID: 24427275 PMCID: PMC3888381 DOI: 10.1371/journal.pone.0083604] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/05/2013] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is one of the most common types of cancer and causes 1.38 million deaths annually, as of 2008 worldwide. Identifying natural anti-lung cancer agents has become very important. Gambogenic acid (GNA) is one of the active compounds of Gamboge, a traditional medicine that was used as a drastic purgative, emetic, or vermifuge for treating tapeworm. Recently, increasing evidence has indicated that GNA exerts promising anti-tumor effects; however, the underlying mechanism remains unclear. In the present paper, we found that GNA could induce the formation of vacuoles, which was linked with autophagy in A549 and HeLa cells. Further studies revealed that GNA triggers the initiation of autophagy based on the results of MDC staining, AO staining, accumulation of LC3 II, activation of Beclin 1 and phosphorylation of P70S6K. However, degradation of p62 was disrupted and free GFP could not be released in GNA treated cells, which indicated a block in the autophagy flux. Further studies demonstrated that GNA blocks the fusion between autophagosomes and lysosomes by inhibiting acidification in lysosomes. This dysfunctional autophagy plays a pro-death role in GNA-treated cells by activating p53, Bax and cleaved caspase-3 while decreasing Bcl-2. Beclin 1 knockdown greatly decreased GNA-induced cell death and the effects on p53, Bax, cleaved caspase-3 and Bcl-2. Similar results were obtained using a xenograft model. Our findings show, for the first time, that GNA can cause aberrant autophagy to induce cell death and may suggest the potential application of GNA as a tool or viable drug in anticancer therapies.
Collapse
|