1
|
Zhang K, Yan Y, Zhao R, Song X, Du L, Zhang B, Yang C, Tang X. Effects of Substitution of Wheat Straw by Giant Reed on Growth Performance, Serum Biochemical Parameters, Nutrient Digestibility, and Antioxidant Properties of Sheep. Animals (Basel) 2024; 14:3678. [PMID: 39765583 PMCID: PMC11672672 DOI: 10.3390/ani14243678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
The development and utilization of unconventional forage resources is crucial to alleviating the current situation of shortage of forage resources. Giant reed (Arundo donax) is a promising forage resource from the Poaceae family, one of the largest herbaceous plants globally, with fast growth, high biomass yield, and strong ecological adaptability. However, there are still very few reports on the use of giant reed in livestock and poultry production. The purpose of this study was to evaluate the effects of adding giant reed instead of wheat straw in total mixed ration (TMR) diets on growth performance, blood biochemical indexes, nutrient digestibility, and antioxidant properties of sheep, thereby providing a theoretical basis for the development and utilization of giant reed herbage resources. A total of 24 fattening sheep (Han × Duper) with similar body weight (20 kg), age (2 months), and health status were randomly divided into four groups with six replicates per group. Sheep in the control group were fed a basal diet (CON), and those in the experimental groups were fed giant reed Lvzhou No. 1 instead of wheat straw, with replacement proportions of 10% (GR10), 20% (GR20), and 30% (GR30) of the total diet, respectively. The results showed that (1) the body weight (FBW) and average daily gain (ADG) of sheep in the GR20 and GR30 groups were higher than those of sheep in the CON and GR10 groups (p < 0.05). Meanwhile, the feed to gain ratio (F/G) of sheep in the GR20 and GR30 groups was lower than those sheep in the CON and GR10 groups (p < 0.05), and the F/G of the GR30 group was lower than that of the GR20 group (p < 0.05). (2) The apparent digestibility of DM and CP in groups GR10, GR20 and GR30 was significantly higher than that in group CON (p < 0.005). The digestibility of NDF and ADF in groups GR20, and GR30 was significantly higher than that in the CON and GR10 groups (p < 0.05). (3) dietary substitution of giant reed for wheat straw had no effect on serum biochemical indices, except serum glucose (GLU, p = 0.014) of sheep. In addition, the substitution of giant reed for wheat straw had a tendency to decrease serum urea content of sheep (p = 0.098). (4) Dietary substitution of giant reed for wheat straw significantly improved serum T-SOD (p < 0.001) and T-AOC (p < 0.001), and significantly decreased MDA (p < 0.001) of sheep. In conclusion, replacing wheat straw with giant reed can significantly enhance growth performance, nutrient digestibility, and antioxidant capacity in sheep without adverse effects on their normal physiological functions.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Yibo Yan
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Rui Zhao
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Xianyi Song
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Liying Du
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Bochi Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Chunlei Yang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China (Y.Y.); (R.Z.); (X.S.); (L.D.); (B.Z.); (C.Y.)
| | - Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
2
|
Labani N, Gbahou F, Lian S, Liu J, Jockers R. 2023 Julius Axelrod Symposium: Plant-Derived Molecules Acting on G Protein-Coupled Receptors. Mol Pharmacol 2024; 105:328-347. [PMID: 38458772 DOI: 10.1124/molpharm.123.000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Plant extracts have played a significant role in traditional medicine for centuries, contributing to improved health and the treatment of various human illnesses. G protein-coupled receptors (GPCRs) are crucial in numerous physiologic functions, and there is growing evidence suggesting their involvement in the therapeutic effects of many plant extracts. In recent years, scientists have identified an expanding number of isolated molecules responsible for the biologic activity of these extracts, with many believed to act on GPCRs. This article critically reviews the evidence supporting the modulation of GPCR function by these plant-derived molecules through direct binding. Structural information is now available for some of these molecules, allowing for a comparison of their binding mode with that of endogenous GPCR ligands. The final section explores future trends and challenges, focusing on the identification of new plant-derived molecules with both orthosteric and allosteric binding modes, as well as innovative strategies for designing GPCR ligands inspired by these plant-derived compounds. In conclusion, plant-derived molecules are anticipated to play an increasingly vital role as therapeutic drugs and serve as templates for drug design. SIGNIFICANCE STATEMENT: This minireview summarizes the most pertinent publications on isolated plant-derived molecules interacting with G protein-coupled receptors (GPCRs) and comments on available structural information on GPCR/plant-derived ligand pairs. Future challenges and trends for the isolation and characterization of plant-derived molecules and drug design are discussed.
Collapse
Affiliation(s)
- Nedjma Labani
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Florence Gbahou
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Shuangyu Lian
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| | - Ralf Jockers
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China (N.L., J.L.) and Université Paris Cité, Institut Cochin, INSERM, CNRS, F-75014 PARIS, France (N.L., F.G., S.L., R.J.)
| |
Collapse
|
3
|
Zhang J, Jia Q, Li N, Gu L, Dan W, Dai J. Recent Developments of Gramine: Chemistry and Biological Activity. Molecules 2023; 28:5695. [PMID: 37570664 PMCID: PMC10419902 DOI: 10.3390/molecules28155695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The natural alkaloid gramine has attracted significant attention in both academic and industrial circles because of its potential and diverse biological activities, including antiviral, antibacterial, antifungal, anti-inflammatory and antitumor activities; application in therapy for Alzheimer's disease; serotonin-receptor-related activity; insecticidal activity; and application as an algicide. In this review, we focus on the research advances that have been made for gramine-based molecules since their discovery, providing key information on their extraction and separation, chemical synthesis and diverse biological activities. Data regarding their mechanisms of action are also presented. This comprehensive and critical review will serve as a guide for developing more drug candidates based on gramine skeletons.
Collapse
Affiliation(s)
- Jiaoyue Zhang
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China; (J.Z.); (Q.J.)
| | - Qitao Jia
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China; (J.Z.); (Q.J.)
| | - Na Li
- Instrumental Analysis Center, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Liqiang Gu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China;
| | - Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China; (J.Z.); (Q.J.)
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Weifang 261053, China; (J.Z.); (Q.J.)
| |
Collapse
|
4
|
Labani N, Gbahou F, Noblet M, Masri B, Broussaud O, Liu J, Jockers R. Pistacia vera Extract Potentiates the Effect of Melatonin on Human Melatonin MT 1 and MT 2 Receptors with Functional Selectivity. Pharmaceutics 2023; 15:1845. [PMID: 37514032 PMCID: PMC10386454 DOI: 10.3390/pharmaceutics15071845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Melatonin is a tryptophan derivative synthesized in plants and animals. In humans, melatonin acts on melatonin MT1 and MT2 receptors belonging to the G protein-coupled receptor (GPCR) family. Synthetic melatonin receptor agonists are prescribed for insomnia and depressive and circadian-related disorders. Here, we tested 25 commercial plant extracts, reported to have beneficial properties in sleep disorders and anxiety, using cellular assays (2─[125I]iodomelatonin binding, cAMP inhibition, ERK1/2 activation and β-arrestin2 recruitment) in mock-transfected and HEK293 cells expressing MT1 or MT2. Various melatonin receptor-dependent and -independent effects were observed. Extract 18 (Ex18) from Pistacia vera dried fruits stood out with very potent effects in melatonin receptor expressing cells. The high content of endogenous melatonin in Ex18 (5.28 ± 0.46 mg/g extract) is consistent with this observation. Ex18 contains an additional active principle that potentiates the effect of melatonin on Gi protein-dependent pathways but not on β-arrestin2 recruitment. Further active principles potentiating exogenous melatonin were detected in several extracts. In conclusion, we identified plant extracts with various effects in GPCR-based binding and signalling assays and identified high melatonin levels and a melatonin-potentiating activity in Pistacia vera dried fruit extracts that might be of therapeutic potential.
Collapse
Affiliation(s)
- Nedjma Labani
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| | - Florence Gbahou
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| | - Marc Noblet
- Science Hub, Sanofi Consumer Healthcare, F-75017 Paris, France
| | - Bernard Masri
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| | | | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ralf Jockers
- Institut Cochin, CNRS, INSERM, University of Paris, F-75014 Paris, France
| |
Collapse
|
5
|
Bi C, Schäkel L, Mirza S, Sylvester K, Pelletier J, Lee SY, Pillaiyar T, Sévigny J, Müller CE. Synthesis and structure-activity relationships of ticlopidine derivatives and analogs as inhibitors of ectonucleotidase CD39. Bioorg Chem 2023; 135:106460. [PMID: 37023582 DOI: 10.1016/j.bioorg.2023.106460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Ticlopidine is an antithrombotic prodrug of the thienotetrahydropyridine family. For platelet inhibition it has to undergo oxidative ring-opening by cytochrome P450 enzymes. The resulting thiol reacts with a cysteine residue of the purinergic P2Y12 receptor on thrombocytes resulting in covalent receptor blockade. Ticlopidine in its intact, not-metabolized form was previously shown to inhibit ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, also known as cluster of differentiation (CD) 39). CD39 catalyzes the extracellular hydrolysis of ATP via ADP to AMP, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine. CD39 inhibition has been proposed as a novel strategy to increase the extracellular concentration of antiproliferative ATP, while decreasing immunosuppressive and cancer-promoting adenosine levels. In the present study, we performed an extensive structure-activity relationship (SAR) analysis of ticlopidine derivatives and analogs as CD39 inhibitors followed by an in-depth characterization of selected compounds. Altogether 74 compounds were synthesized, 41 of which are new, not previously described in literature. Benzotetrahydropyridines, in which the metabolically labile thiophene is replaced by a benzene ring, were discovered as a new class of allosteric CD39 inhibitors.
Collapse
|
6
|
Wang B, Li M, Gao G, Sanz-Vidal A, Zheng B, Walsh PJ. Synthesis of Tryptamines from Radical Cyclization of 2-Iodoaryl Allenyl Amines and Coupling with 2-Azallyls. J Org Chem 2022; 87:8099-8103. [PMID: 35675635 DOI: 10.1021/acs.joc.2c00767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient synthesis of tryptamines is developed. Indole structures were constructed using 2-iodoaryl allenyl amines as electron acceptors and radical cyclization precursors. Radical-radical coupling of indolyl methyl radicals and azaallyl radicals led to the tryptamine derivatives. The utility and versatility of this method are showcased by the synthesis of 22 examples of tryptamines in ≤88% yield. In each case, indole formation is accompanied by in situ removal of the Boc protecting group.
Collapse
Affiliation(s)
- Bo Wang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States.,Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Minyan Li
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Gui Gao
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States.,Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Alvaro Sanz-Vidal
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States.,Departamento de Química Orgánica, Universidad de Valencia, 46100 Burjassot, Spain
| | - Bing Zheng
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Jasiewicz B, Kozanecka-Okupnik W, Przygodzki M, Warżajtis B, Rychlewska U, Pospieszny T, Mrówczyńska L. Synthesis, antioxidant and cytoprotective activity evaluation of C-3 substituted indole derivatives. Sci Rep 2021; 11:15425. [PMID: 34326403 PMCID: PMC8322387 DOI: 10.1038/s41598-021-94904-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 12/04/2022] Open
Abstract
A series of fifteen indole derivatives substituted at the C-3 position were synthesized and characterized. The antioxidant activity of all derivatives was investigated by three in vitro antioxidant assays, and the derivative with pyrrolidinedithiocarbamate moiety was the most active as a radical scavenger and Fe3+-Fe2+ reducer. It can be stated that possible hydrogen and electron transfer mechanism is suggested for the quenching of the free radical. Moreover, the indolyl radical stabilization and the presence of unsubstituted indole nitrogen atom are mandatory for the observed antioxidant activity, which strongly depends on the type of the substituent directly connected to the methylene group at the C-3 position. Human red blood cells (RBC) have been used as a cell model to study derivatives interaction with the cell membrane. Haemolytic activity and RBC shape transformation were observed for certain derivatives in a concentration-dependent manner. However, most of the derivatives at sublytic concentration showed high cytoprotective activity against oxidative haemolysis induced by 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH). The cytoprotective properties of derivatives can be explained mostly due to their interactions with the RBC membrane components. Taking together, theoretical estimations and experimental data confirm the beneficial interactions between the selected C-3 substituted indole derivatives and the RBC membrane under oxidative stress conditions. These results encourage us to further structural optimization of C-3 substituted indole derivatives as potent antioxidant compounds.
Collapse
Affiliation(s)
- Beata Jasiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | | | - Michał Przygodzki
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Beata Warżajtis
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Urszula Rychlewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Tomasz Pospieszny
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
8
|
Boutin JA, Witt-Enderby PA, Sotriffer C, Zlotos DP. Melatonin receptor ligands: A pharmaco-chemical perspective. J Pineal Res 2020; 69:e12672. [PMID: 32531076 DOI: 10.1111/jpi.12672] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
Melatonin MT1 and MT2 receptor ligands have been vigorously explored for the last 4 decades. Inspection of approximately 80 publications in the field revealed that most melatonergic ligands were structural analogues of melatonin combining three essential features of the parent compound: an aromatic ring bearing a methoxy group and an amide side chain in a relative arrangement similar to that present in melatonin. While several series of MT2 -selective agents-agonists, antagonists, or partial agonists-were reported, the field was lacking MT1 -selective agents. Herein, we describe various approaches toward the development of melatonergic ligands, keeping in mind that most of the molecules/pharmacophores obtained were essentially melatonin copies, even though diverse tri- or tetra-cyclic compounds were explored. In addition to lack of structural diversity, only few studies examined the activity of the reported melatonergic ligands in vivo. Moreover, an extensive pharmacological characterization including biopharmaceutical stability, pharmacokinetic properties, specificity toward other major receptors to name a few remained scarce. For example, many of the antagonists described were not stable in vivo, were not selective for the melatonin receptor subtype of interest, and were not fully characterized from a pharmacological standpoint. Indeed, virtual screening of large compound libraries has led to the recent discovery of potent and selective melatonin receptor agonists and partial agonists of new chemotypes. Having said this, the melatonergic field is still lacking subtype-selective melatonin receptor antagonists "active" in vivo, which are critical to our understanding of melatonin and melatonin receptors' role in basic physiology and disease.
Collapse
MESH Headings
- Animals
- Humans
- Ligands
- Melatonin/chemistry
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/antagonists & inhibitors
- Receptor, Melatonin, MT1/chemistry
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/antagonists & inhibitors
- Receptor, Melatonin, MT2/chemistry
Collapse
Affiliation(s)
- Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Paula A Witt-Enderby
- School of Pharmacy & Graduate School of Pharmaceutical, Administrative and Social Sciences, Duquesne University, Pittsburg, PA, USA
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Würzburg, Germany
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, The German University in Cairo, New Cairo City, Egypt
| |
Collapse
|
9
|
Wang SY, Shi XC, Laborda P. Indole-based melatonin analogues: Synthetic approaches and biological activity. Eur J Med Chem 2020; 185:111847. [DOI: 10.1016/j.ejmech.2019.111847] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
|
10
|
Chen SY, Geng CA, Ma YB, Huang XY, Yang XT, Su LH, He XF, Li TZ, Deng ZT, Gao Z, Zhang XM, Chen JJ. Polybenzyls from Gastrodia elata, their agonistic effects on melatonin receptors and structure-activity relationships. Bioorg Med Chem 2019; 27:3299-3306. [PMID: 31204226 DOI: 10.1016/j.bmc.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Gastrodia elata is a famous traditional Chinese herb with medicinal and edible application. In this study, nine polybenzyls (1-9), including six new ones (2-5, 7 and 9), were isolated from the EtOAc extract of G. elata. Five compounds 1, 3, 4, 6 and 8 were found to activate melatonin receptors. Especially, compound 1 showed agonistic effects on MT1 and MT2 receptors with EC50 values of 237 and 244 μM. For better understanding their structure-activity relationships (SARs), ten polybenzyl analogs were further synthesized and assayed for their activities on melatonin receptors. Preliminary SARs study suggested that two para-hydroxy groups were the key pharmacophore for maintaining activity. Molecular docking simulations verified that compound 1 could strongly interact with MT2 receptor by bonding to Phe 118, Gly 121, His 208, Try 294 and Ala 297 residues.
Collapse
Affiliation(s)
- Si-Yue Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Yun-Bao Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Xiao-Yan Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Xiao-Tong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Hua Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Zhen-Tao Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|